
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Heterogeneous Uncertainty: The Impact ofQuantitative andQualitative
Uncertainty in Data Pipelines

ANONYMOUS AUTHOR(S)

0 m

120 m

240 m

360 m

480 m

600 m

720 m

840 m

960 m

1080 m

1100 m

1220 m

1340 m

1460 m

1680 m

1800 m

1920 m

2040 m

2160 m

2280 m

2400 m

2520 m

2600 m

Di
p


Ma
gm
ati
c


foli
ati
on

Brit
tle

Cry
sta

l

pla
stic

Vei
ns

120 m

Good

Fair

Undocumented

Poor

Image Quality

A

 CMTA-1591

 CMTA-1591

 CMTA-1592

Fair

Good

Noisy

Verify

0 m

120 m

240 m

360 m

480 m

600 m

720 m

840 m

960 m

1080 m

1100 m

1220 m

1340 m

1460 m

1680 m

1800 m

1920 m

2040 m

2160 m

2280 m

2400 m

2520 m

2600 m

Mineral Map 

Quality

Data Quality Flags Across the Core Data Annotations and Interactive Checks 

HiCa‐Pyroxene 

in Fe-bearing glass 

Fe‐bearing 

Olivine

Compare spectra?

IgnoreOpen

Possible Mineral Missclassification

Image Quality

Poor

C

D

Fig. 1. Presenting system and sensor-based error. (A) An overview of data quality flags for the entire dataset where one core section
is selected and viewed with mineral map. (B) A data quality flag for the opened core section. (C) Annotations of the mineral map.
(D) Annotations for a region of the mineral map where a mineral may have been misclassified. Overview and selected core section
possess axes showing depth where the section was drilled.

Effective reasoning about uncertainty remains challenging for scientific and machine learning (ML) communities in part due to its
heterogeneity. Multiple sources of uncertainty contribute to imprecision in downstream analysis, yet existing approaches often bucket
these distinct sources into a single measurement. This paper argues for more nuanced treatment of heterogeneous uncertainty in
research and data pipelines. Through a case study of a large-scale, collaborative geophysics research project, we document the sources
of heterogeneous uncertainty and identify how they contribute to “research debt”. We present an initial exploration of how these
heterogeneous sources of uncertainty might be communicated beyond aggregate encodings, and demonstrate that doing so can offer
greater transparency for downstream analysis.

CCS Concepts: • Data Science → Uncertainty; • User Interviews→ Subject Matter Experts.
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1 INTRODUCTION

Including notions of uncertainty in lay communication, scientific discourse, and even machine learning explanations has
received increasing attention [36, 37, 62]. Data visualization plays a key role in this work as uncertainty communication
has a rich history in the data visualization research community [37, 63, 65, 66]. But the scope and nature of this work is
often limited to a particular framing of uncertainty; in seeking to effectively communicate and understand uncertainty,
information about its underlying nature is often lost. As Skeels et al. [77] point out, uncertainty is complex, multifaceted,
and not always quantifiable, making it difficult to compute. Similarly, this variability introduces unique challenges to
uncertainty visualization.

Heterogeneous uncertainty—wherein multiple sources of ambiguity contribute to the overall uncertainty of a system
or model—offers a clear example of this difficulty. When uncertainty is presented visually, it is most frequently through
a singular, cumulative encoding, such as in the height of an error bar or boxplot [64], an animation [1, 21], the width of
a line chart’s ribbon [65], or text and glyphs on or near a graph [7]. These binned encodings are visually simple not just
for readability, but also because of the form of uncertainty we as a community have focused on: total uncertainty, a
quantified, numerical value representing an apparently complete measure of data’s ambiguity. Yet as [42] describe, the
“drive to reduce uncertainty can lead to unwarranted expressions of certainty.” Even when uncertainty arises across
a data pipeline [66], this underlying heterogeneity is not often communicated, introducing potentially misleading
abstractions.

For the visualization community, the absence of work navigating complex, heterogeneous uncertainty may be tied
to insufficient examples where heterogeneity exists and requires unique treatment. Uncertainty is well-described
in its potential introduction along a data pipeline, but most examples illustrating uncertainty provenance are not
comprehensive to one dataset. To this end, we demonstrate the ways in which heterogenous uncertainty arises and
might be communicated through a case study of a large, collaborative, scientific dataset of drilled oceanic core samples.
The dataset is part of a collaboration with a multi-national, large-scale geophysics research project [3], and contains
multiple sources of uncertainty that necessitate expert discourse. We detail four such sources of uncertainty within the
dataset, contextualized by interviews with expert stakeholders, supporting the need for more extensive approaches
to uncertainty communication. These touch on stochastic and epistemic uncertainty, algorithmic and interpolation
uncertainty, and experimenter bias. Our work aims to explore how and what uncertainty measures might be presented
to different stakeholders. Finally, we reflect on our findings and describe potential trade-offs different communities face
regarding heterogeneous uncertainties. We argue that by providing more “surface”—more levels, measures, and facets
of uncertainty—to interact with and query against, knowledge is extended.

2 RELATEDWORK

2.1 Types of Uncertainty

Uncertainty arises from “incomplete information” about data, systems, models, or simply the state of the world [44]. It
confounds stakeholders, introducing ambiguity that must be rationalized or reduced to ensure better decision-making.
A number of frameworks and taxonomies of uncertainty have been proposed across a range of different domains,
Manuscript submitted to ACM
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including economics [75], statistics [31], life sciences [71], and medicine [28]. These taxonomies can be general, but are
more frequently domain-specific; at some point, practically every basic or applied research field will publish a review of
the particular forms of uncertainty they face. Targeted taxonomies help communities understand the implications of
specific uncertainties they must manage. This is useful because strategies for reducing uncertainty are shaped by the
type of uncertainty and the context of the task [84]. In contrast, generalized taxonomies offer broad direction but rarely
get into the minutia of underlying causes.

Within machine learning communities, uncertainty is often distinguished as either epistemic uncertainty (e.g., due
to an intrinsic lack of knowledge), or aleatoric uncertainty (e.g., natural variation) [61]. These distinctions are not
overly descriptive, and uncertainty taxonomies often take a step further in characterizing uncertainty’s complexity.
For example, Smithson [78] and Han et al [28] both propose variants of a three-dimensional taxonomy in detailing
uncertainty that arises when information is characterized by probability (e.g., stochasticity), ambiguity (e.g., multiple
interpretations of a single event or variable) or vagueness (e.g., imprecision or fuzziness in definitions or measurement).
Other taxonomies describe uncertainty as it arises when progressing through an analysis pipeline.

For example, Pang et al. [66] explored where uncertainty may be introduced along a visualization pipeline—from
measurements, data transformations, models, and even the visualization process. In the visualization literature, com-
monly cited types of uncertainty include error, accuracy, precision, validity, quality, variability, noise, completeness,
confidence, and reliability [19]. Skeels et al. [77] classified uncertainty similarly, but added two unique measures to the
list: measurement precision, completeness, inferences, credibility, and disagreement.

Uncertainty has multiple working definitions. For some domains, the term references quantifiable, measurable
ambiguity. But uncertainty as defined by “incomplete information” can also be subjective, difficult to abstract into a
concise measurement. Popular frameworks for uncertainty rarely addresses this qualitative form of uncertainty directly,
but there are some exceptions. McCurdy et al. [57] coined the term “implicit error” to describe a type of measurement
error not explicitly recorded or communicated, but inherent to an expert’s interpretation of data. Through a disparately
collected, heterogeneous public health dataset, McCurdy et al. [57] noted that many data discrepancies are often not

reflected in a dataset. Instead, this unrecorded error is accounted for qualitatively by experts during analysis, based
on their implicit domain knowledge. McCurdy et al. [57]’s two-part formalized framework details characteristic traits
of implicit error—source, type, magnitude, direction, confidence, and extent of the error—and proposes a method to
uncover these traits via domain expert interactions. Their work highlighted the value of externalizing implicit error for
supporting more effective data analysis, despite the difficulty faced in capturing it. Ultimately, implicit error is pervasive
in all data, as the simple act of observation—automated or not—is informed in some way by the observer.

2.2 Machine Learning and Uncertainty

Recent work within the machine learning community has discussed how different sources of uncertainty may have
unique implications for model outputs [20]. Thus far, this work has been limited to differences between mislabeled
(noisy) data, and unique, poorly represented data. But uncertainty is a growing question for the machine learning
community, and has been related to questions of model transparency and appropriate trust [4].

Machine learning (ML) models are historically poor self-evaluators, tending to be over confident when incorrect—a
result of miscalibrated uncertainty measures and under-specification [17]. As a result, recent work has explored models
that self-report and self-calibrate uncertainty measures [46, 47, 67]. Recognizing sources of uncertainty in these contexts
is a key to uncovering the causes for model overconfidence.

Manuscript submitted to ACM
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Bias, a specific form of uncertainty, has been a common thread in machine learning fairness research. This work tends
to emphasize the “human” sources of bias as these can cause discriminative harm when magnified by a model [12, 69].
Such bias is difficult to accurately assess, and ML researchers outside fairness instead tend to focus on uncertainty as it
relates to probabilistic outcomes and model accuracy. This is changing as the community recognizes that deployed
models fail when implications of human bias are not considered carefully enough [40], but work separating heterogeneous
uncertainties in modeling contexts—bias, error, and beyond—remains limited.

2.3 Uncertainty Visualization and Analysis

The responsibility of not only understanding where uncertainty exists, but also how to communicate it falls largely on
researchers and journalists. Despite broad recognition of the need to include measures of uncertainty in visualizations,
many authors are hesitant to do so—for example, in Hullman’s 2019 study on uncertainty visualization authorship (which
used a visualization-literate convenience sample), nearly half of respondents admitted to considering but ultimately not
including uncertainty measures in their charts [36].

There are multitude of reasons why visualization authors avoid portraying uncertainty in their work. Hullman [36]
describe concerns for chart comprehensibility, the quality of a reader’s experience, the risks of wrongly encouraging
data distrust, and the limited number of high-quality uncertainty visualization examples. Even when uncertainty is
presented visually, it is often through a singular, cumulative encoding, such as in the height of an error bar or boxplot
[64], an animation [1, 21], the width of a line chart’s ribbon [65], or text and glyphs on or near a graph [7]. The nature
of these visual artifacts hints at the balancing act visualization authors face in communicating uncertainty—they must
weigh the relative trade-offs of a graph’s comprehensibility with the desire to communicate nuance. These binned
encodings are visually simple not just for readability, but also due to the uncertainty we as a community have focused
on: total uncertainty, a quantified, numerical value representing an apparently complete measure of data’s ambiguity.
Yet as Kale et al. [42] describe, the “drive to reduce uncertainty can lead to unwarranted expressions of certainty, which has

consequences for decision-making individually and at an organizational level.”

2.4 Technical and Research Debt

Technical debt refers to the long-term costs of allowing insufficient artifacts within systems to remain [10, 45]. Histori-
cally, the term was used when convenient decisions in the short-term led to downstream “debt” that developers must
pay back either through extra work or loss of product quality and functionality. Machine learning (ML) systems are
particularly sensitive to hidden technical debt as developers must cope with both traditional code maintenance and debt
accumulated as a feature of ML data dependencies [74]. Modeling-specific debt can be difficult to detect because it exists
at system and organization levels, rather than in code. Incurring debt—by not refactoring code, minimally considering
training data, forgetting documentation, or allowing unnecessary dependencies—may expedite development at first,
but at the expense of compounding work in the future. For modeling, this debt can be hidden, compounding silently
overtime.

Here, we use the term research debt in reference to decisions and artifacts within a data pipeline which also incur
debt but with the added complexity that such debt may lead to imprecise or skewed scientific findings—a challenge
exacerbating the “replication crisis” within research, where scientific results are found to be unreproducible [51, 52].
Reproducibility problems are often blamed on researchers’ communication of procedure and analysis. However, the
lack of tools supporting deliberation of alternative decisions or contextualizing ambiguity may also be blamed [42].
Software development has established best practices to mitigate technical debt, but these are not so clear in data work.
Manuscript submitted to ACM
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Researchers must reason with heterogeneous uncertainty when developing conclusions. This uncertainty, when not
mitigated appropriately, is a form of technical debt accumulated over the course of collection, analysis, and modeling.

3 PROBLEM DOMAIN AND BACKGROUND

There are manymoving parts to manage within large, collaborative research projects, each contributing to the complexity
and introducing new sources of uncertainty researchers must contend with. For this reason, these collaborative projects
are ideal case studies for understanding heterogeneous uncertainty across data pipelines.

We explore heterogeneous uncertainty from the framing of one such collaboration, the ICSDP Oman Drilling Project
(OCDP). OCDP is a scientific research collaboration studying how the oceanic crust was formed. The project was
funded to recover and analyze 3.2 km of earth core—cylindrical rock drilled and removed from the earth—recovered
from the “Rosetta Stone of complex tectonic settings”, a region in Oman where rock that was once ocean floor and
upper mantle and has since been thrust up through the continent [38, 70]. Multiple types of data were collected, each
helping researchers understand the geological events involved in the crust formation. The datasets are used to map
minerals within the earth at different spatial resolutions.

Multiple methods of data collection were conducted to analyze rock composition, including: building detailed core
descriptions ( Figure 2D); physical sampling ( Figure 2C); and X-ray, CT, andmicrospectroscopy scanning across the entire
drilled core ( Figure 2A, D). Of these methods, time-intensive compositional analyses such as thin section petrographic
analysis (small physical samples viewed under microscopes for close, detailed descriptions shown in Figure 2C and
X-ray diffraction were collected in areas of high interest. These samples act as ground truth for the portion of the core
they were removed from, but they are not collected contiguously across the entire core. In contrast, the microspectral
images are taken for every core section—creating a comprehensive view of all 3.2𝑘𝑚 of drilled earth—and are used to
create “mineral maps” showing which minerals are present in a given core section. By referring to the spectral mineral
maps, a geophysicist can interpolate mineral composition between physical samples. Core descriptions are critical
to geological research, acting as an overview to direct research initially. Dozens of researchers collect, analyze, and
publish on the Oman core data, many with differing agendas and data needs [23, 26]; here, we focus on the work and
data interrelated to spatially-resolved reflectance spectra collected across the entirety of the drilled core sections.

4 METHODS

Over a span of six months, we conducted forty-eight unstructured and semi-structured interviews, participatory
and co-design processes, interactive workflow observations, cognitive walk-throughs, and think-aloud sessions with
hyperspectral and geophysics researchers. These sessions focused on the challenges researchers faced in their current
workflows and analysis software. Sessions were recorded via audio, video, or careful notes. Recordings were transcribed,
and thematic analysis was initially conducted to synthesize findings. We do not report our findings from this initial
thematic analysis as many of these themes relate to systems requirements. Instead, we explore a common thread across
interviews: uncertainty, in its many forms.

We group heterogeneous uncertainty uncovered in our interviews through light coding and our own expertise.
In section 5, we describe sources of uncertainty specific to Oman Core. As part of our documentation process, we
illustrate the nuance of disparate sources of uncertainty and how they may—in some cases—necessitate distinct forms
of presentation and counteracting measures to avoid compounding research debt. We generalize our findings to the
broader scientific and machine learning communities. Finally, we present a selection of initial exploratory interface and
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Fig. 2. Examples of data types used by Oman core researchers [26, 43]. (A) Depiction of HSI data for a singe section: (X, Y) represents
pixel location, spectral bands are mapped to Z. An example spectral graph is shown with absorption features of minerals. (B) An
RGB image and associated mineral map built with HSI data. (C) Petrographic thin section and section where it was extracted. (D)
Abbreviated view of a core description log.

Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Heterogeneous Uncertainty: The Impact of Quantitative and Qualitative Uncertainty in Data Pipelines 7

visualization designs for communicating heterogeneous uncertainty, developed through participatory and co-design
sessions. We discuss the motivation behind these motifs and how they might generalize beyond Oman core data.

5 SOURCES OF UNCERTAINTY

Uncertainty was often not a term used by researchers. Instead, our participants described their decision making processes
when working with ambiguity, and how they attempted to reduce or characterize any uncertain factors. This often
implied validating the data and their work through cross-referencing other sources of information (e.g. other people,
other datasets, similar examples within their own dataset, and previously published libraries or work). This triangulation
occurred regularly—an effect of the complexities faced when working with multiple stakeholders on big, novel data.

The ambiguity—or uncertainty—these scientists were responding to shared many commonalities with uncertainty in
other domains, but often wasn’t communicated or recognized as a form of uncertainty. And the steps taken in response
to uncertainty were often not documented (the exception being measurement imprecision or uncertainty in statistical
evaluations, such as what is presented by confidence intervals). This is because reporting quantified uncertainty is
conventional for almost all disciplines, but reporting institutional knowledge [32] or implicit error [57]—the “stuff
around the edges”—is not. Through a detailed description of the Oman core dataset, we unpack how heterogeneous
uncertainty is introduced across a full data pipeline. We broadly group these sources of uncertainty as follows: Human
Factors in Collection Bias, Measurement Error, and Modeling. Within each category, we discuss how multiple sources of
uncertainty contribute to overall imprecision. While we frame our discussion to generalize across many data pipelines,
our emphasis is on how heterogeneous uncertainty presents within a single research project.

5.1 Human Factors in Collection Bias

We broadly describe systematic error accrued during collection as Collection Bias. There are multiple opportunities for
uncertainty to be introduced as data is collected. The particular impact of these early sources of ambiguity depend on
the type of data, the subject of observation, and the method of collection, each with potentially varied outcomes: biases
may reduce an experimental or observed effect, amplify it, or even offset other biases [27]. In other cases, collection
bias may lead to skew in what is observed or added to the dataset.

In HCI and ethical ML contexts, we often assume this type of uncertainty is a feature of human involvement.
Collection bias is not just caused by people. In practice, researchers in pure science domains regularly account only
for non-human sources of collection bias. Human factors also impact pure science, but historic desires for objectivity
[18] faced by all research communities, and the difficulty of characterizing these factors in a tractable, fieldable way
have led to it being regularly overlooked. As implications of these two forms of collection bias are distinct, we discuss
human factors in data collection bias here and touch on non-human sources of uncertainty in subsection 5.2. Regardless,
undocumented collection bias in both pure science and applied machine learning may distort reality, invalidating
scientific conclusions and introducing harmful priors.

5.1.1 Oman Core. For Oman core researchers, working in a large-scale collaboration meant human factors were even
more influential to data collection. The researchers worked in twelve hour shifts to extract core sections, develop core
description logs, secure physical samples, and collect various imaging data. Of these artifacts, core description logs

( Figure 2D) frame future research directions, helping researchers navigate the core by building an overview of its
features. The core descriptions offer pivotal insight into how these researchers approached their work, “connecting
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the dots” between apparently disparate research workflows. In discussing Collection Bias, we focus on the interplay
between researchers, core logs, and the other data.

Core descriptions are a fundamental to geological research as much of the work relies on visual evaluations and expert
descriptions. As researchers examine the drilled rock samples, they systematically record all available information
such as texture, patterns, grain size, apparent type, and locations where samples are taken. This information acts as an
overview for the core and is then used to determine the lithology (rock type), mineralogy, potential geological history,
structure and alteration zones (changes in mineral composition of rock caused by physical or chemical means). Core
descriptions are sometimes published as a first contribution of larger geophysics research projects as they provide
such rich sources of information. They are often saved as large excel files, filled with data, annotations, and simple
visualizations documenting the entire length of the drilled core sections. This level of detail is significant, offering
external viewers an intimate view of the researchers’ progression over time (in both the geological and temporal sense).

While the core descriptions are useful, they do not perfectly capture the state of the drilled rock or the granularity
researchers might need. To supplement this, physical samples were simultaneously collected semi-regularly across the
cores and in regions of particular interest. These samples—such as thin sections ( Figure 2C) or X-ray crystallography—
are used to evaluate the efficacy of initial log descriptions and pursue new research questions. They act as “ground
truth” references for complex portions of the core where other methods may prove unreliable.

5.1.2 Sources of Uncertainty. We uncovered three human sources of collection bias introduced during data collection
and initial core documentation: 1) evolving understanding, 2) diverging research agendas, and 3) experimenter fatigue.
Largely falling into the category of implicit error, each form of collection bias may have implications for efficacy and
ease of subsequent research discoveries. Our examples here emphasize the need for documenting uncertainty provenance
(the history of data) and how we might build it retrospectively.

Evolving Understanding. During logging, researchers describe the core in great detail as they understand it—when
deeper sections of the core are drilled, new discoveries from the physical samples occur, or novel patterns are uncovered,
community understanding of these geological processes evolves. While these changes may be hinted at in the core docu-
mentation, the underlying shifts in knowledge leading to these changes in documentation are not clearly documented,
and prior logging may not always revisited. When comparing the deepest sections of the core to the top sections,
researchers must be aware of this natural learning curve because it influences what features of the rock are attended
to—and where more physical samples are taken. As an example, an uncommon mineral was detected by researchers
collecting hyperspectral images during core extraction. This mineral occurrence was unexpected by the geologists
visually inspecting the core sections, and would have remained uncaught if not for the additional reference point. It
had unique implications for the geological events for that region of oceanic crust, and the ensuing discussion led to
deliberate references of the mineral within the core description. As the extraction continued, the mineral remained
a focal point for the geologists to attend to and additional samples were taken in the area where it occurred. This
discovery remained salient to the researchers, but—beyond documentation of sampling and the mineralogy of the
rock—is not so obvious from the core descriptions.

Limited meta-descriptions of analysis provenance and pivotal shifts in knowledge are pervasive in data-driven
domains [32], creating spaces for implicit bias [57]. In this context, time and resource constraints introduced by working
long shifts over a short two-week period challenges how much retrospective work is reasonable. Instead, future research
involving the logs often relies on researchers’ communal memories of the data collection process and any hints that can
be inferred by the log notes.
Manuscript submitted to ACM
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Fig. 3. Presenting human factors in collection. (A) an timeline overview of different stakeholder documentation and sampling
activity. (B) selected core descriptions of sections with particular patterns of sampling based on clustered features in descriptions. (C)
Highlighted similarities in descriptions marking where sampling behavior deviated, with a prompt to open related views.

Disparate Research Agendas. Variability in the researchers’ agendas is similarly influential to core descriptions
and physical sampling: petrologists interested in geothermal intrusions might collect thin section petrographic data
largely in rock veins, while another focused on water interactions cares little about, leading to cases of sampling-based
datasets biased toward a subset of rock characteristics. As cross-referencing various sampled data with descriptions and
hyperspectral (HSI) images is used to evaluate the reasonableness of findings, these trends may cause frustration for
those not influencing the sampling decisions, a point we re-address in subsection 5.3.

These examples of implicit error [57]—evolving understanding and diverging research agendas—are communicated
only as institutional knowledge [32], and are incredibly difficult to quantify or visualize. While researchers “in the
know” are aware of this implicit error in collection and modify their work accordingly, external researchers may not be
cognizant of these nuances. This contributes to research debt, as new generations of researchers must either relearn
prior knowledge, seek aid from others, or incorrectly interpret data without awareness of to its conception.
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10 Anon.

Experimenter Fatigue. Experimenter fatigue is well described in prior literature [39, 55] and can greatly impact the
accuracy of collected data. In instances where a significant amount of data is quickly collected over short periods of
time, the risks of mistakes occuring as a result of fatigue increases. Experimenter fatigue in Oman Core is difficult to
measure as people switched between logging the core and other duties—no one person was responsible for logging the
core information, making it difficult to account for or even recognize when the influence of fatigue is present. Further,
who was responsible for documenting different sections of the core is not explicitly included within the descriptions.
Researchers collecting the data mitigated fatigue through regular twelve hour shifts, but this is still an exhausting
amount of time to be attentive.

5.1.3 Implications. There is dirth of examples highlighting changes in data collection methods and disparities in
working agendas, yet we know that better documentation of data and data analysis is beneficial across many domains,
particularly those with complex or high risk environments [58]. Evolving understanding and variable research agendas
are interrelated—a research agenda is shaped by new discoveries and prior experiences. And the influence of these
priors, which perhaps resonates most with our cultural understanding of human bias, generalizes beyond research
agendas. We know bias in datasets may cause harm [69], and that it can arise from something as simple as the order
in which data is presented to labelers [56]. This is true outside Oman core. For example, crowdsourced labels are
often biased by personal opinions; this is unavoidable. Even expert annotators are not able to objectively label data
without careful prompting [35]. Yet historically, these priors are not communicated with the dataset, possibly because its
inclusion entails additional work for collectors. When biases are documented, however, it becomes possible to mitigate
their downstream effects, such as through post-collection interventions [53].

Failure to properly adjust expectations to the limitations of data can have serious consequences. Jordan [41] described
a now well-known case of this: a model which used “white spots” as a predictor of Down syndrome was trained on
lower resolution CT scans than the real world scans the model was deployed on. Because of this discrepancy, noise
in higher resolution images were incorrectly labeled as precursors for down syndrome—an avoidable consequence of
poorly communicated changes to data specifications.

Even with the level of detail found in our core descriptions example, information was missing about decisions that
ultimately led to observable changes in the data. This missing information contributes to overall research debt, as the
“proverbial garden of forking paths” taken by researchers [25] is obscured to outsiders. We will illustrate this using
an example described by our interviewees. During core extraction and early analysis, researchers did not distinguish
two minerals in descriptions or other sampling documentation. At the time, the differences between the minerals did
not, “inform the scientific goal of determining trends in hydration, formation temperatures, and water chemistry with

depth,” as they had similar implications to the researchers [23]. These minerals were spectrally distinct however—a term
we unpack in subsection 5.2 meaning the minerals presented differently within the dataset—and this distinction was
important for a downstream modeling task. Later, when the researchers ran their classification models, this distinction
needed to be revisited (which we discuss in subsection 5.3), but doing so required the expertise of involved researchers
and their knowledge of what their decision implied for core documentation and research findings.

When introducing new or external researchers to datasets, much of this nuance can be lost, creating opportunities
for misunderstanding and increasing the difficulty of working with the data. Outside Oman core data, evolving
understanding influences the composition of labeled datasets, and research processes more generally. Questions related
to how labeling hierarchies are developed and why certain decisions are made (such as for rare outliers) is important
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information for downstream analysis, particularly when a model incorrectly learns a concept. In order to fix these errors,
we must know why it ocurred; even pervasive skew can be missed when its origins are not obvious in documentation.

5.1.4 Communication. Outside geology and similar disciplines, it is uncommon for researchers to have such information-
rich documentation. Even within the Oman core dataset, information about experimenter fatigue, evolving understand-
ing, and the different researcher agendas is not explicitly documented. Because so much information is detailed, however,
and because the data, collection, and analysis maintains an innately sequential structure, biases present within the
Oman core descriptions and sampling may be inferred retrospectively. For example, free-hand notes about interesting
features of the rock are common in the core descriptions—different comment styles (such as brevity or grammar) can
be distinguished using known natural language processing techniques to create timelines of the research process and
researchers involved. And because the core data is extracted and evaluated in a linear fashion, changes in sampling
patterns can be tracked as a surrogate measure of evolving understanding, different research agendas, and experimenter
fatigue. Within the descriptions, co-occurrences of minerals, features, rock types, and experimental sampling can be
grouped to into behavior profiles. From these behavior profiles, we uncover discrepancies in the data—places where
an unexpected decision was made (e.g. samples were not taken when expected, or were taken unexpectedly) can be
highlighted for the researchers. In doing this, we create a proxy for collection and analysis provenance; although likely
imperfect, these measures provide a starting place for researchers to reflect on the project’s development.

The question remains then of how we communicate these profiles and the behavior discrepancies such that they
contextualize the data. This is important, as the presentation will influences how researchers respond to any highlighted
discrepancies. From on our interviews, co-design, and participatory design sessions, we noted that this contextualization
must reference the data in way that is meaningful to the users without impeding analysis or exploration. Further,
presentation should facilitate comparisons and follow-ups by the researchers. This allows them to evaluate the validity
of highlighted discrepancies. Finally, these methods of communication should not imbue artificial authority to the
system or recommendation. This final point was not uncovered through our interviews, but instead borrows from
known concerns for data visualizations and machine learning explanations to discourage critique [33] and encourage

overtrust [13, 24]. While we as a research community are still unclear how to reduce the assumed authority of these
modalities, careful, non-prescriptive language and visual “sketchiness” [8, 33] may help.

In Figure 3 and Figure 4, we illustrate a selection of visual representations communicating diverging research agendas
and evolving understanding. The first, Figure 3, shows an interface where a user is evaluating the efficacy of physical
sampling across the core. The user is currently considering a section where a sample wasn’t extracted.

The interface shows four elements: a depth axis highlighting the location of the most similar sections; an adjacently
aligned activity timeline showing when different stakeholders were likely logging core descriptions ( Figure 3A); core
descriptions with annotations hinting at similarities between sections with disparate sampling behavior ( Figure 3B);
and an interactive comment box noting sections may be similar and the shared features between the different sections
( Figure 3C). Within the depth axis, three pink dots highlight where similar core sections are located. The activity
timeline was built using the previously described behavioral profiles, allowing viewers to note who was involved in
documenting which regions of the core. While not shown, this timeline must be editable as researchers are implicitly
aware of who was documenting the core and whether the profiles correctly characterized them.

Annotations—pink, rectangular boxes—on the core log next to Figure 3C highlight an area where physical samples
were not extracted, breaking expectations built from prior sampling in core sections with similar features. A comment
box is open next to the annotation asking if the user would like to examine sections with similar characteristics. The
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Fig. 4. An alternative approach to presenting possible human biasing effects. (A) Characteristics within core descriptions are sorted
by 𝑋,𝑌 axes. Sampling frequency where features co-occur are mapped to discrete colors. (B) Filtering by description characteristics
and number of overlapping features (co-occurrences) highlights relationships researchers responsible for collection cared about in the
data.

most similar regions are listed under the query, along with the features of note. These features are highlighted once
more with simple annotations. The user has opened one of the sections—located at a different dot on the depth axis—and
the shared features between the two documents are highlighted for the user to examine Figure 3B.

These human-sourced sources of uncertainty are often subjective, thus presenting them as abstracted values may
overtly influence researchers’ interpretation of the data, further adding to research debt. Our use of annotations to
communicate these human-sourced biases borrows is a response to this. Rather than visualizing quantified metrics
(which we explored extensively in our design sessions, an example of which can be seen in Figure 4), our goal was to
create a modality of support rather than tell. We noted that many abstractions made it difficult to relate to the data, even
when they offered opportunities to discover new relationships within the data. For this context, supporting required
methods allowing researchers to contribute to the body of knowledge about the implicit error—a feature McCurdy et al.
[57] described as an critical to characterizing the causes of error—and recommending areas where human review might
be necessary.

5.2 System & Sensor-based Error

In subsection 5.1, we focused on uncertainty introduced by humans. Here, we turn to uncertainty caused by technical,
computational, or sensor errors. In some cases, how people mitigate human and non-human types of uncertainty might
have overlap. How we uncover and communicate the causes of uncertainty generally does not. Here, we describe three
non-human sources of uncertainty: Data Corruption, Noise, and Miscalibration. Each requires a different response from
researchers—in some cases, the solution is to delete or replace data. In others, there’s a systematic error which if known

can be resolved through adjustments to the dataset.

5.2.1 Oman Core. Moving forward, we focus on hyperspectral imaging (HSI) data. While Oman Core researchers
collected many types of data, their HSI dataset is large, complex, and challenging to model. As a brief overview, the
Manuscript submitted to ACM
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Oman Core HSI dataset included images for the entire 3.2𝑘𝑚 length of drilled core—over 4,000 individual core sections.
For a single section, a hyperspectral image can contain over a million pixels, with each pixel containing hundreds of
spectra. Unprocessed, the raw dataset is ∼31 TB. HSI data consists of hundreds of adjacent mid-infrared wavelengths
of light [14]. These wavelengths (or spectral bands, shown in Figure 2A) are collected as three-dimensional image
cubes 𝐼 (𝑥,𝑦, 𝜆) where 𝑥 and 𝑦 represent pixel coordinates and 𝜆 represents the spectral bands. Researchers characterize
features within the spectra to determine what materials are present within a given image. These characteristics are
spectral absorption features, distinctive peaks and valleys in the spectral graph where light is reflected. Absorption
features are unique to a material’s structural and elemental composition, allowing researchers to rapidly determine
the rock core’s mineral composition per pixel at a micro (∼85 𝜇m/pixel visible-near infrared and ∼250 𝜇m/pixel for
shortwave infrared) scale by comparing an image’s absorption features to previously documented absorption features.

5.2.2 Sources of Uncertainty. Because hyperspectral data captures light reflectance, the quality of the image and the
image subject is fundamental to trustworthy analysis. Data that is too noisy or inaccurate will produce sub-optimal
mappings to minerals, distorting downstream analysis [6]. Trust in spectral analysis builds on the expectation that the
rock face is cleanly cut, there is minimal shadowing, and that little noise is introduced during collection. We describe
three sources of uncertainty tied to data quality below. Generally, each of these sources is recognizable through an
expert visual check, but such manual work is arduous.

Data Corruption. The simplest example of error is when data is corrupted. For Oman core researchers, these are
relatively straightforward cases to catch as the images “don’t look like we’d expect”, as one interviewee described,
appearing similar to white noise on a screen. This is generally true for many domains—corrupted data isn’t usable,
and that is often immediately apparent. But when evaluating large, complex datasets like Oman Core, some instances
may still slip through despite best efforts. These corrupted examples contribute to a dataset’s noisiness and may harm
downstream models. The reasonable response is to remove the corrupted data, assuming it is caught. In the best case
scenario, the data is unimportant or easily replaced. But for Oman core researchers, replacing images is not always
feasible, and removing an image disrupts the HSI continuity. In regions of the core that are geologically uninteresting,
that loss might be acceptable. In others, losing rare exemplar sections could hinder research agendas. Thankfully, image
corruption was not common in the Oman core dataset.

Noise. Noise—unwanted additions to the data—is harder to detect than corrupted data, but is still achievable through
careful audits. To minimize noise within their HSI dataset, Oman core researchers normalized the HSI images during
pre-processing to avoid uncharacteristic spikes in spectral graphs. Yet even with these processing steps, noise may still be
problematic. In our interviews, there were two instances where noise was particularly problematic. We will use examples
from the Oman core HSI dataset to explain. In HSI data, thresholds for what is “normal” data are pre-determined by
experts. But HSI data measures how photons interact with materials, and these thresholds do not always account for
unusual properties of light. The clearest example of this occurs when two minerals mix such that resulting spectra
exceeds the thresholds set by researchers. This is a result of the physical mechanisms by which light (photons) excites
molecules within a mineral or mineral mixture. When minerals mix together, resulting spectra may not present a
linear or additive relationship—for instance, reflected light may even jump from infrared wavelengths (invisible to the
human eye) to the visible spectrum []. We briefly describe the complexity this introduces to statistical analysis further
in subsection 5.3. Because these thresholds are set a priori, instances where legitimate spectra surpass these threshold
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may be listed as noise and removed from the dataset. In this instance, legitimate features of data were treated as noise
despite their accuracy, leading to the loss of a potentially valuable sample.

Alternatively, when HSI images containing a calibration reference are normalized, the newly normalized reflectance
can present spectral features resembling minerals in normalized radiance values [9]. This is rare, but will lead to
mislabeling the reference as a mineral. Here, the data is noisy, but because the noise wasn’t distinguishable using the
threshold set by the researcher it has been included in reporting. Both of these scenarios—noise appearing as signal, and
signal appearing as noise—are difficulties faced by both Oman core researchers and the scientific community at large.

Artifacts in the spectra can be introduced from something as simple as the angle an image was captured at, or how
the rock face was cut: if it is not reasonably flat, ridges might introduce shadows affecting how the light scatters. As HSI
sensors measure photons, increased scattering not caused by the rock composition bungles this measurement. Some
automated tools can catch artifacts by checking for images with spectra outside an expected range. Automated checks
like this are not perfect, however, as the quality of raw, unprocessed HSIs is inconsistent. Oman core HSI data has a
higher spectral variance compared to other hyperspectral imagery, making it technically simpler to distinguish minerals,
but contains rare mixtures that automated checks are likely to incorrectly flag [23]. Spectral geologists develop an
intuition for a given dataset based on prior experiences, the context in core descriptions, and similarly located samples.
This allows the geologists to determine the reasonableness of absorption features in a given image for a specific region
of the core—an evaluation not easily replicated by automated tools.

Miscalibration. Measurements have inherent inconsistency—we could repeatedly observe the same subject using the
same method and yet still find differences in our results. This may be caused by natural variation in observed subjects, in
methods of measurement, or in both [5]. For sensor users, measurement error is a particularly common phenomenon that
must be constantly attend to. This is because the physical properties of sensors change over time—gravity, movement,
changes in environment, and the effects of time passing all may cause a “drift” in measurement specifications. Readers
might have experienced a simple example of this: a telescope is a wonderful tool to explore the night sky, but even
a gentle nudge can shift it out of focus. Only by refocusing the telescope can viewers see with the clarity previously
experienced. Similarly, sensors must be calibrated regularly to ensure recorded values are accurate.

Oman core researchers regularly calibrated their sensitive HSI sensors. These calibrations were two-fold: they
calibrated sensors using certified laboratory light source, checking for inconsistent recordings and adjusting the sensor
accordingly. Then, each spectral image is captured with a calibration reference during collection. These references are
made of simple, certified materials with well-known optical properties [76]. This two-step calibration ensures that the
sensor is calibrated for internal consistency and that the recording itself will be calibrated to the given environment at
collection. If the first calibration is done poorly, a sensor may no longer be internally consistency in reporting. This
type of miscalibration can not be modeled by researchers, rendering the data uninformative.

In contrast, this second calibration allows researchers to retroactively calibrate their data—these recordings are
internally consistent (thus reliable signal), but are not yet translatable to other sensor measurements. This secondary
calibration is neccessary because ambient light at collection may vary in lumination, distorting absorption features. By
comparing the calibration reference’s reflectance in the spectral image to its expected value, researchers discover how
much the sensor and light conditions deviated from their laboratory settings. Once measured, this variance is used to
build a ’noise’ profile to normalize the image against in downstream analysis [49]. If the calibration reference is not
included—or if the material in the reference is contaminated—future spectral data processing may result in incorrect
minerals being associated with the image subject.
Manuscript submitted to ACM
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5.2.3 Implications. Measurement errors are ubiquitous, but there are several ways researchers may eliminate or
minimize them. These fall into two buckets: building systems designed to reduce the effects of error after the fact, and
dealing with error as it arises. Each solution exhibits trade-offs. Models and systems built to operate under uncertainty
are still breakable under certain conditions, as shown by a significant amount of ML research on adversarial examples
[54], and building robust systems entails a loss of accuracy [81].

Responding to error where it occurs is also not a simple task. Automated systems (such as our example of checking
spectral absorption features using expected thresholds) can fail to account for cases that are unexpected by the system
designer, or may mislabel real, valuable outliers within datasets as noise. Yet manual review is often intractable for
large datasets. Instead, most domains have found a blending of both automated and manual approaches necessary,
but this is only applicable for error that is known. Because many errors—sometimes serious ones—may go undetected
for surprisingly long times [50], these automated systems must include clear descriptions of the problem. Ideally, this
description includes possible causes and remedies, even tools to make correction easier.

These challenges are not unique; literature from over two decades ago also explored how to design for error [50], but
new developments in computation, graphics, and human-computer interaction, and the massive need for better tools
to assess big data offers rich opportunities for improvement. Mediocre responses to technically-sourced data errors,
just like human biasing factors, continues to effect downstream analysis in ways that we are often not aware of. By
informing expert practitioners in an understandable way of these varied sources when necessary, closer examination
and improvement of these effects is possible.

5.2.4 Communication . One of the biggest challenges that our interviewees faced was not in managing system and
sensor-based error, but in communicating it to their collaborators. This is understandable—measurement error is a
well-described problem with known means of mitigation, but methods to communicate its implications are not. Not
all of the people working on the project had expertise in interpreting HSI data, but many still relied on this data to
help them interpolate findings across the drilled core. Distinguishing which portions of the data could be used for
this—because it was reliable—and which could not—because there was too much noise—was important for ensuring
valid research conclusions.

Instead, they expressed a desire to “flag” images that weren’t necessarily reliable. This flagging wasn’t a computed
value, but rather qualitative measure developed by the experience and expertise of the spectroscopists. Their concern
was a recurring theme in our design sessions, and as a result of this externalization, the researchers began including
simple meta-data descriptions about the quality of the underlying HSI data and the downstream mineral maps built
from them within their dataset. We incorporated this new value and their need for simple, contextual cues into our
approaches to uncertainty communication, a sampling of which is shown in Figure 1.

In Figure 1A, we show an overview of these data flags. Because Oman core data is a thin, very long, continuous
sequence of hyperspectral images, we re-order it to fit on a screen. Both 𝑥 and 𝑦 axes represents depth measurements.
The x-axis measures the entire length of the core, with tick marks every 120m. The y-axis represents the 120m of core
sections in between ticks. Data quality flags are color-coded by the label determined by researchers applied to the
mineral maps: Green is a “good” data, “yellow” is fair, and red is poor, unreliable, or noisy.

Prior visualization work has explored how to communicate missing data [79]. In the Oman dataset, there were
instances where data was also missing. A low-risk example of this was in the qualitative data quality labels the
researchers had begun adding. In several sections, there were cases where some data did not have this label. While
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likely not harmful, Figure 1A includes a simple method of highlighting which sections had not received a flag, allowing
researchers to easily note what portions of the core have not been labeled yet.

5.3 Modeling and Analyses

There are a multitude of ways that uncertainty arises during modeling and analysis. Here, we describe types of
uncertainty introduced by modeling and statistical analysis. We ground our discussion using our Oman core example,
but generalize beyond Oman core to similar contexts across domains. Our depiction of uncertainty sources is intended
to highlight the variability of uncertainty and its outcome, not be a comprehensive review of all possible causes of
“incomplete information”. We connect the sources of uncertainty presented in subsection 5.1 and subsection 5.2 to
downstream impacts on modeling, and highlight the cost of not addressing these causes earlier in the data pipeline.

5.3.1 Oman Core. Typical classification of hyperspectral data is a time-consuming, semi-manual interpretive process.
Researchers must define class requirements based on the application’s context as new data introduces new research
agendas and new variables to consider. As an example, what is interesting and expected for the Oman core HSI data will
be dramatically different when compared to HSI data recovered by the Mars rover. For Oman HSI data, these researchers
might care how igneous rock occurs in the core [72]. By examining where, how, and what type of igneous rocks are
present, they discover how cycles of hydrothermal activity are involved in the formation and cooling of the earth’s
crust. Contrasted to Oman HSI data, these same researchers might instead care about magnesium carbonates within the
Martian HSI data [72]—minerals often formed by microbial activity.

This matters because the common approach to geological HSI classification begins with experts determining the
likely geologic processes involved in formation of the imaged rock, using this knowledge to target probable absorption
features within the new spectra. Note: we discussed how core description logs are developed in in subsection 5.1.
Here, we can directly see the downstream influence of this bias. If the core description logs include inaccuracies,
geologists analyzing HSI data may mistarget important absorption features. Once the researchers have determined
which important absorption features to isolate, researchers will map the presence and relative amount of minerals
within each pixel. This mapping is be accomplished through comparisons against established absorption features
published in spectral libraries [15], use of unsupervised or supervised classifiers, mixture modeling, or simple algebraic
operations with expected threshold values.

5.3.2 Sources of Uncertainty. Uncertainty is introduced anywhere probability, statistics, or inference is applied. This is
certainly true of unsupervised or supervised learning. Here, we describe instances where uncertainty is introduced in
modeling, including: 1) Library Dependencies, 2) Problems with Dimensionality, 3) Overlapping Features (non-unique
absorption), 4) Overlapping Meaning, (Substitutions), 4) Variable Noise Profiles, and 5) Blindspots. If left unaddressed,
each of these may contribute to research debt.

Library Dependencies. Interpolating between a gold standard and the real world is a common challenge in research.
HSI data is particularly complex, but many communities experience similar difficulties. HSI classification is semi-manual
because there is so much natural variability in a spectra that algorithmic classification cannot solely be relied on. This
logic can be applied to machine learning applications. When supervised models are trained on a labeled dataset, they
develop expectations from this data. The model will perform badly in deployment if real data is out of distribution to
the training data. Instead, datasets must be regularly updated with new examples to fill in missing data.
Manuscript submitted to ACM
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As we previously described, different minerals have different chemical compositions, and thus different spectra.
Sampled spectra are compared to libraries of known mineral reflectance spectra, allowing researchers to build mineral
maps across the entire core (shown in Figure 2B). These libraries provide a baseline against which all naturally occurring
materials can be compared against, but using them comes with a drawback: they were built using the reflectance of
minerals in a pure, powdered form. We’ve described how sensitive HSI sensors are to changes in the rock or ambient
light. They are also sensitive to changes in material—powdered minerals are not a perfect spectral match for minerals
in solid rock. Features from these gold standard examples must be translated, often through trial and error, to match the
specific application needs.

In a similar vein (pun intended), spectral libraries measure absorption features for pure minerals, but minerals do not
occur in that form in nature. Instead, minerals are often mixed together. Spectra are complex, nonlinear functions of
particle size, abundance, material opacity, and surface type [30, 68]. When multiple minerals are mixed together, photons
of light can interact with the materials such that the resulting spectra far exceeds the thresholds set by mineral libraries
and the geologists. These mixtures are difficult to characterize, a task that grows increasingly complex when more
than two component minerals are involved [83]. Researchers must do some form of “spectral unmixing” to measure
presence and abundance of minerals, typically through a linear model, or by incorporating principle component (PCA)
or Gaussian mixture models. Because of the modeling complexity, algorithms are often be finely tuned to measure a
specific mineral. This may negatively impact recognition of other minerals. In our example, there are dozens of minerals
in the core and their presence is not consistent—optimizing for one mineral must be done carefully.

Overlapping Features. Misclassification often occurs when there is not enough signal within by a dataset for a model
to correctly learn to label or group a sample. This type of uncertainty can usually be reduced by increasing the number
of examples within the dataset that match the confusing data point [20, 32, 73], but there are instances where the error
still can not be reduced. When the method of observation used to develop the dataset cannot capture distinguishing
features—because the classes share overlapping features—classification using said data becomes intractable.

We’ll illustrate this using an example shared by an interviewee: before this point, we’ve described absorption features
as specific to a mineral, but this is not always the case. There are occasionally minerals that are indistinguishable in the
spectra, even to an expert, but these spectrally similar minerals can have dramatically different implications. Instances
of indistinguishable minerals being misclassified are not uncommon, leading to systemic over- or under-reporting [34].
When minerals are indistinguishable, researchers are faced with a conundrum. Using the data that they have, how do
they differentiate the minerals?

Algorithmic approaches fail to surface potential misclassifications under these contexts, and the researchers likely
will not catch the incorrect label unless prompted. Because the HSI data does not capture a meaningful signal, the
researchers must turn to external resources—e.g., thin sections and core descriptions—to correctly relabel the core HSI
data. Similar misclassification behaviors do occur in other science domains, and these also require manual overview
and external data to uncover.

Overlapping Meaning. In contrast to overlapping features, some classes actually have overlapping meaning. This
source of ambiguity includes places where apparently distinct features or concepts have a shared interpretation, and
should thus be grouped or treated the same downstream. One interviewee described an instance of this within HSI
data. Occasionally, an element within an mineral will be substituted for another (such as iron and magnesium, which
often switch). This will change the spectra. The minerals with substitution will then deviate from the prototypical
presentation of spectral libraries, but this change will not impact the implications of the mineral’s presence. This is
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generally more of an annoyance than a concern, as simple heuristics for post-classification interventions can resolve
this discrepancy. These guidelines must be developed by a priori by researchers, however, otherwise they will not be
distinguished in the model outputs and may lead to missteps in researchers’ interpretation.

Blindspots. There are times where the sensor or tool of observation simply does not work for a given subject. Cases
of this might include cameras that are too low resolution to catch small changes in the environment, or measuring
non-conductive fluid (e.g. pure water) flow rates with a magnetic flow meter (a popular meter used in plumbing that
measures the voltage of fluids). Mismatches between the sensing technology and the material of interest can lead to
skewed measurements—in our plumbing example, downstream effects may include ruptured pipes and water damage.
In research, these mismatches might be an effect of best fit.

In Oman core HSI data, this mismatch means there are invisible minerals. The researchers are aware of this, but chose
to use the HSI data because it is effective at capturing the majority of mineral presences in high resolution. Quartz is
spectrally featureless in visible, near-infrared and shortwave-infrared HSI sensing [22]. These minerals do not show up
in the spectra but are known to be present throughout the core. Wrangling with this unknown is difficult for modeling
and analysis, is easily missed by researchers, and yet is still important for valid results.

Problems with Dimensionality. Because there are few training datasets likely to generalize to the specific context,
unsupervised learning is a popular means for grouping mineral spectra. Spectral data is highly dimensional, and
there are “infinitely many” naturally-occurring infrared spectra, a well know weakness for clustering approaches [23].
Unsupervised clustering involves translating a sample into vector space, then grouping samples via distance measures.
In highly dimensional data, samples appear dissimilar in too many ways, impeding the grouping.

Typically, dimensionality reduction is applied to dataset to mitigate this problem, but performing dimensionality
reduction on HSI data is difficult—clusters in HSI are typically nonlinear, and may have class overlap, rendering the
reduction an overly lossy function [60]. This is true of any dataset with nonlinear relationships, requiring careful
reflection and evaluation when applying these techniques lest they lead to misclassification from signal loss.

Noise Profiles Vary. As we discussed in subsection 5.2, noise profiles in hyperspectral data vary widely depending
on target, imaging conditions, instrumentation, and calibration, and can have distinct spatial or spectral structures
[16, 48, 59]. Because of this, classification can be difficult—researchers must either curate parameters and thresholds
to match the influence of the noise, or they must normalize the data using the differences between the target and
known conditions. When the noise varies, these adjustments will not match all of the different needs in the data. If
the same noise profile is incorrectly applied across all HSI images, the results may be incomparable, and the resulting
classifications imprecise.

5.3.3 Implications. Sources of uncertainty introduced early in a data pipeline accumulate and compound within
the modeling stage. When possible, these uncertainties are best responded to where they arise, as the complexity of
characterizing the uncertainty grows as time passes, memory fades, documentation is lost, and people stop iterating on
the dataset. Overtime, unaddressed uncertainty can become a permanent feature. Examples of this can be found even in
published training datasets [69, 80], where failures to appropriately evaluate uncertainty within the data can become
very public.

Sources of imprecision, noise, and ambiguity modeling are common, particularly in domains that require significant
human overview. For Oman Core, automating this labor-intensive workflow faces many challenges. Recent work by
[2] discussed how people want to closely interact with their data, and that abstractions can be frustrate attempts
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at sensemaking. Similarly, Oman core researchers wanted to frequently examine the raw data, switching between
multiple views to understand the context and implications of analysis and giving special attention to portions of data or
analysis that likely introduce more uncertainty. For big data, this can be an impossibly large task. Instead, tools that
facilitate targeting human oversight are helpful; characterizing uncertainty introduces more considerations for what
such automated systems might target, and should hint at possibly appropriate mitigation responses.

One nuanced source of research debt has particular overlap with the technical debt faced in software development:
library dependencies. In our HSI example, researchers used gold standard spectral libraries to set hard-coded thresholds
and values within their analysis scripts. These libraries will often be replaced in the future with new, more accurate or
context-appropriate gold standards (for example, spectral libraries of powdered minerals will be replaced with their
solid counterparts). When this happens, researchers must contend with the remnants of prior work and answer the
following questions: how do we compare our future analyses to our old? In some cases, the work is important enough
to repeat classification using new spectra. In others, trial and error may provide a means to map between the two eras
of work. This translation will only be possible if there is data (and uncertainty) provenance to contextualize the dataset.

Finally, library or data dependencies often do not translate to the real world, in all its variability. These dependencies
introduce many opportunities to misclassify real data that is out of expected distribution. Recent work is exploring how
to surface cases where data is out of distribution and not noisy or mislabeled [29, 82]. These methods may ameliorate
the effects of uncertainty which can only be addressed after modeling.

In software, updates to package dependencies require extensive refactoring. Technical debt is accumulated when
these updates are not completed. Paralleling this, data dependencies—an aspect of any project where protocols or data
specifications change—accrue research debt when poorly managed.

5.3.4 Communication . Many sources of uncertainty are present within modeling tasks. Many of these are downstream
uncertainties are caused by earlier steps in a data pipeline. This was reflected in our design sessions and interviews,
where we found that communicating downstream uncertainty was also beneficial for modeling tasks as it facilitated
reasoning. For this reason, Figure 1 includes uncertainty from prior steps and uncertainty introduced in modeling.

For each of our discussed sources of uncertainty, researchers’ needs differed—in the case of invisible minerals, a
spectroscopist must account for absent quartz post-analysis by relying on other data sources, e.g. core descriptions and
thin section sampling, but the presence or lack thereof of quartz may not immediately influence their research process.
This discrepancy can be managed later as long as it is properly documented and communicated to other researchers
interpreting the data.

Random sources of uncertainty have errors that vary according to each analysis, affecting the relative precision of
different results. This stochastic uncertainty is familiar, and existing methods for communicating it may be effective
enoughwhen data is presented through common graphs and charts. However, hyperspectral images and their subsequent
mineral maps are not a typical format for data visualization. When quantified, individual pixels may present unique
error values. These errors were important to the researchers, as the mineral maps documented the entirety of the core,
augmenting or “filling in the gaps” of data collected more sparsely.

To this end, our design goals focused on how to situate uncertainty measures within the particular context of the
data. Here, we used “sketchy” [33] crosshatching to annotate uncertainty on the images, as shown in Figure 1 C. These
sketchy annotations highlight regions within the HSI data where uncertainty in mineral map classification—either
numerical uncertainty based on algorithmic parameters, or the qualitative meta-labels included by the researchers—is
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present. In this particular case, we use the researchers’ labels. The level of crosshatching in the region is based on the
significance of the uncertainty: areas where the data is less trustworthy will have more annotations.

6 DISCUSSION AND FUTUREWORK

Existing uncertainty taxonomies document multiple sources of uncertainty, yet this heterogeneity is rarely reflected in
the presentations we use to direct next steps. This may be tied to how we think about reducing uncertainty—actions
taken to reduce uncertainty within a system depend on the source and context, but we tend to compress uncertainty to
cumulative measures for both modeling and communication purposes. This creates a useful, though artificial, simplicity.
For researchers in the midst of developing tools or deploying models, simplicity may obfuscate important information.

We know that the presence of uncertainty in visualizations, which is marked as part and parcel of either data or
associated statistical models, is intended to contextualize known ambiguity and improve understanding between readers
and the data. Our discussions of heterogeneous uncertainty, and our motivations in communication methods, are
intended to support dialogue not just between the analyst and the data, but between experts, analysts, and data more
broadly.

We posit that total uncertainty represented through a singular encoding channel may limit experts in fundamental
ways. We have discussed how heterogeneous uncertainty may unfold within a single data pipeline and the research
debt it may accrue. Just as implicit error is one facet of uncertainty requiring deeper engagement, compounding effects
of heterogeneous uncertainty requires expert dialogue to build clarity. Externalizing the process of synchronizing,
validating, and enhancing interpretation across multiple sources of uncertainty can inform error mitigation, and is
particularly critical in cases where multiple experts collaborate around a dataset. Research debt, just like technical debt,
may be paid down by refactoring, documenting, iterating, and refining data and analyses processes.

Tools supporting researchers in building empirical certainty and replicability, we argue, may benefit from exposing
individual facets of uncertainty. Similarly, Future work may explore tools for developing uncertainty provenance.
Through unpacking heterogeneous uncertainty, we begin to ensure appropriate trust is placed in data [11].
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