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Motivation

Contribution

- Lack of diversity in data collection causes
failures when deploying ML products

. Post-collection interventions are time
ntensive and rarely comprehensive

» Focusing only on one aspect of an ML
pipeline is not enough
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Designing data is an iterative approach to data collection. It includes (1) Pre-
Collection Planning, (2) Collection Monitoring, & (3) Data Familiarity (an

application of density estimation).

—ach intervention complements the others,

ensuring the final dataset provides as comprehensive coverage as possible.
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Designing Data

1. Pre-Collection Planning

Building representative datasets is an
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By understanding how a model perceives data,
we can focus data collection efforts on the
most useful su
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With reflexive planning & by documenting e e model—those that either are not represented
expected distributions, collectorsensure ™ pme o o appropriately, are challenging to learn, or were
these specifications are as compre-hensive erroneously collected.
as possible before collecting. 08 06 Here, we learn a Gaussian Mixture model
: e (GMM) on a NN's layer activations:
ML Collect Dashboard
Vv e N 2 COI IeCtlon Monltorlng M

a collection, (3) Whatyoudat =~ 000 S
(1) before continuing to (2), 3). | jst the dimensions and distributions you expect in your dataset
list the dimensions you want to consider in your data collection. For each dimension, set the

(1) Describing data(  Please change the code below to ;
. . . pected distribution of values as a list of tuples of the form

dimension as a top-level key of the dictionary and provide the ex

ll bE”ﬂmlms {class, probability) .

Who is collecting or

eeeeeee

——————
: g ) stomach_bed_left |
lllllllllllllllllllllllllll

OOOOO

probability probability probability probability

000000000

eeeeeeee

probabili

aaaaaaaaaaa

eeeeeeee

£ ] £ 1]

i » S 3
. — — o, o — = O — =
e e m e e e Tma e m s e = 2 = m =2 s LT TTITITITITITITITICICITIR W
3 E &= =E - . - AL el - -

ity probability

probability probability

Results

Despite best efforts, data collected might
not match expectations.

By contrasting expected
distributions to real time data, we
capture the dataset's evolution,
allowing users to make targeted
adjustments when needed.

3. Familiarity

Despite increasec
expected and actual data
distributions may
needs of model.
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Where X is the matrix of layer activations,

w;, I = 1,...,M are the mixture weights, and
glx|pu,2),i=1,..,M are the Gaussian densities.
PCA is used to reduce the dimensionality. The

resulting log-likelihood values are the
familiarity scores.
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These are used to debug a dataset early in
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Does auditing to increase data diversity improve

model generalizability?
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Diverse Data Intersectional
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Is data familiarity useful for auditing model & data?
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