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Abstract
The AI industry is exploding in popularity, with increasing at-
tention to potential harms and unwanted consequences. In the
current digital ecosystem, AI deployments are often the prod-
uct of AI supply chains (AISC): networks of outsourced models,
data, and tooling through which multiple entities contribute
to AI development and distribution. AI supply chains lack
the modularity, redundancies, or conventional supply chain
practices that enable identification, isolation, and easy correc-
tion of failures, exacerbating the already difficult processes of
responding toML-generated harms. As the stakeholders partic-
ipating in and impacted by AISCs have scaled and diversified,
so too have the risks they face. In this stakeholder analysis of
AI supply chains, we considerwho participates in AISCs,what
harms they face, where sources of harm lie, and how market
dynamics and power differentials inform the type and prob-
ability of remedies. Because AI supply chains are purposely
invented and implemented, they may be designed to account
for, rather than ignore, the complexities, consequences, and
risks of deploying AI systems. To enable responsible design
and management of AISCs, we offer a typology of responses
to AISC-induced harms: recourse, repair, reparation or pre-
vention. We apply this typology to stakeholders participating
in a health-care AISC across three stylized markets—vertical
integration, horizontal integration, free market—to illustrate
how stakeholder positioning and power within an AISC may
shape responses to an experienced harm.
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1 Introduction
Current efforts to understand what AI can and should do focus
largely on desired end-user experiences and model outcomes.
These efforts often miss an important factor shaping the use
and consequences of AI: the AI systems we interact with
are increasingly developed via fragmented “AI supply chains”
through which multiple participants shape downstream use
and effects. While AI supply chains (AISCs) enable firms to
outsource otherwise prohibitively expensive technology, data,
and expertise that support AI deployment, they differ in many
ways from traditional supply chains. For one, by contributing
data and layers of inference, the steps along an AI supply chain
add more than just the functional and tangible components
of downstream products. Downstream components may feed
these additions back into upstream processes in complex feed-
back loops, which lack transparency and control. Similarly,
outputs from one AI system—a probabilistic determination—
are increasingly used as inputs to or training data for another
AI system. As these sampled distributions are based on like-
lihood, they lack a mapping back to real world examples or
otherwise distinguishing characteristics specific to the model
provider. 1 Thus traceability (or provenance) is challenged by
both complex feedback loops and the “non-injective” property
of distributions. 2

Despite these challenges, the increased accessibility and
efficacy of machine learning (ML) continues to encourage
1While work on watermarking [45] seeks to ameliorate this issue, it remains an
open problem.
2A function (or system) is non-injective if it can map two or more different
inputs (in the domain) to the same output (the codomain). In such cases, it’s
difficult to trace an outcome back to a unique source.
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AI SUPPLY CHAINS
Stakeholders in FORMS OF REDRESS
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Figure 1: Stakeholders & redress typology in AISCs. (A) An overview of stakeholder roles in an AI supply chain,
including (1) Infrastructure, (2) Model Providers, (3) Data Providers, (4) Intermediaries, (5) User/Consumer-Facing,
and (6) Users/Consumers. (B) A summary of the redress typology: recourse, repair, reparation, and prevention

AI supply chains’ permeating ubiquity; such networks have
grown common, complex, and diverse, expanding the number
of contributors affecting downstream inference tasks [33], of-
ten with little documentation or disclosure of their upstream
or downstream dependencies. While a simple AI supply chain
may include only a base model (e.g., GPT-3 or ResNet-152) and
domain-specific data (e.g., for properties of organic molecules
[87]), AI supply chains now encompass multiple firms inter-
facing with the broader AI ecosystem and data capture, or
directly with end-users, as in the case of Salesforce, Google,
and Microsoft’s recent integration of AI across platforms.

While the AI supply chain phenomenon has become famil-
iar, there is thus far no significant analysis that reflects the
relative power and differential consequences resulting from
participating and prospective stakeholders’ roles and inter-
actions, nor has there been an accounting of how challenges
presented by AISCs shape these interactions. Since the 1980s
[25], the concept of stakeholder has been widely adopted for
just this purpose: to identify the actors with whom any orga-
nizational entity regularly interacts; i.e., any entity that has
both an interest and influence in its activities. In this paper,
we identify participating and prospective stakeholder roles,
interests, and interactions as a first effort toward addressing
the risks posed by AISCs.

We begin by recognizing two fundamental truths about AI
supply chains. First, the growth of AI supply chains is the
result of a system that has provisioned massive computational
capacity, [ heretofore called ‘compute’], privatized funding
and ownership, and substantive innovation and direction to a
handful of actors. Second, the scale of AI adoption and model
adaption (e.g., fine-tuning), along with the numerous AI ser-
vices supporting AI use, means that AI supply chains vary sub-
stantially in organizational structure and (inter)dependencies.

The sprawling, diverse, and rapid development of the AI indus-
try and adjacent technologies has established a status quo that
reflects little shared planning or centralized design through
which affected stakeholders might work together toward com-
mon goals. Instead, the industry’s growth appears organic and
unstructured.

The appearance of organic emergence suggests that AI sup-
ply chains are not designed per se, and do not serve general—
private or public—interests, for example, because they do not
prioritize common incentives and shared language. They have
emerged through complex webs of competitive and innova-
tive transactions. As these networks have grown common,
however, lack of design and human planning has led to as-
sumptions of minimal responsibility, benefiting empowered
stakeholders while introducing significant, even existential,
risk to others.

Our efforts are motivated by the following observation: AI
supply chains are invented and implemented by humans with
agency. They may, thus, be designed as a functional indus-
trial ecosystem that accounts for the complexities, novelties,
and risks of AI supply chains. Stakeholders are enabled or
constrained by the dynamics within AI supply chains, and
the current state of AI supply chains introduce information
asymmetries and substantive disparities between stakeholders.
By considering who participates in AISCs, what harms they
face, where sources of harm lie, and how market dynamics
inform the type and probability of remedies, our hope is to
inform the design of functional AI supply chains.

To this end, we characterize stakeholders by their role
(participation) and interaction in AI supply chains. We iden-
tify mechanisms for harms that arise from the dynamics of
these networks and the effects of AI, revisiting known mech-
anisms within the context of AISCs—false content, biased
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decision making, poor explanations and transparency, data
scraping, security and privacy failures, and environmental
effects—and compiling new mechanisms introduced to AI as a
result of AISC adoption—reduced optionality, homogenization,
dispersed responsibility. We then characterize stakeholder re-
sponses to realized risks with a typology differentiating among
forms of redress: recourse, in which the harm is halted either
through an action by the agent responsible or the harmed
entity; repair, in which the harm is corrected; reparation, in
which there is compensation for the harm; and prevention, in
which the harm is mitigated before it occurs.

Finally, we extend beyond simple enumeration to exam-
ine how AI supply chain variation—particularly in the ac-
cumulation and distribution of economic opportunity and
power—shapes stakeholders’ capacity to respond to, and ac-
cept accountability for, these harms. Specifically, we apply
our response typology and stakeholder characterization to a
healthcare AISC example in three stylized markets—vertical
integration, horizontal integration, and openly competitive (or
“free”)—to illustrate how the positioning and power of stake-
holders within an AI supply chain influence the likelihood of
both harm and response.

1.1 Related Works
Prior work has identified the systemic tendency for responsi-
bility to be diffused in computerized societies, warning of a
"many hands" problem where blame is easily shifted or lost
altogether [12, 59]. More recently, questions regarding how
these same challenges are instantiated by AISCs have emerged
[13]. These works ascribe challenges to liability or accountabil-
ity allocation, scoping their focus to a specific interest ([48]
focus on copyright infringement and its legal implications, for
example), or emphasizing the difficulty of allocation, though
these efforts are often abstracted from the context-specific
challenges surfaced when a harm materializes (e.g., calls for
transparency tooling [14, 84]’s).

In contrast, this work considers how stakeholder interac-
tions and market dynamics challenge or otherwise support
common actions neccessary in addressing technological and
systemic failures: repairs, reparations, preventions, and of
course, recourse. Specifically, we ask “how do institutional or
stakeholder arrangements enable or block redress?” This neces-
sarily requires us to consider that AISCs are not just emerging
technical assemblages but structured economic arrangements—
contractual, organizational, and market-based. Our efforts
build upon Pfeffer and Salancik [63]’ theory of resource depen-
dency, Thompson [76]’s work describing organizational inter-
action, and Wrong [86]’s analysis of power to consider how
institutional logics such as risk outsourcing, liability avoidance,
organizational boundary management, resource dependence,
coordination frictions, and modes of integration inform the
distribution of power and avenues of redress across AISCs.

2 Stakeholder Analysis
Beginning from theories of the firm [24, 26, 85], stakeholder
analysis has become a commonly used technique for iden-
tifying and managing challenges and risks arising from an
organization’s activities and ongoing transactional relation-
ships. A stakeholder analysis of AI supply chainsmust consider
not just those who build AI models but also those who “affect
or [are] affected by the achievement in [an] organization’s
objectives,”[24]. Rather than conceiving of the organization
or firm as the focal center of an environment of surround-
ing stakeholders with simply dyadic or mutually independent
relationships, stakeholder analysis recognizes that organiza-
tions produce consequences for their human and material
environments, and therefore persist and thrive within highly
interactive networks of mutual interdependence [63, 68], that
may also include significant resource dependencies [27, 61].
Stakeholder analysis is both a form of social science— descrip-
tive and predictive—and the basis of normative claims about
how organizations ought to perform and how public policy
ought to be made [18, 43].

Simply naming categories of actors is not sufficient to dif-
ferentiate stakeholders who can affect a firm or are affected by
a firm, policy, or an AI supply chain. To be effective in identi-
fying “who or what counts” in stakeholder analysis, however,
one ought not “to weave a basket big enough to hold [all] the
world’s misery” [11]. Instead, stakeholders should be identi-
fied as actors “having something at risk” in the relationship or
system [64].

Prior work sorts stakeholder salience into three overlap-
ping attributes: power, legitimacy, and urgency [55]. Power is
the capacity to bring about intended outcomes in interaction
with others [70, 83, 86]. It is not a fixed trait but exercised
through mobilizing resources—force, incentives, personality,
moral leadership, expertise, or argumentation [86]—and car-
ries no inherent moral valence. Legitimacy concerns the right-
fulness of action, defined by social norms and often linked to
legal standing. It is distinct from power; actors like terrorists
or criminals may exert influence without legitimate claims. As
Suchman puts it, legitimacy is “a generalized perception or
assumption that the actions of an entity are desirable, proper,
or appropriate within some socially constructed system of
norms, values, beliefs and definitions” [74]. Urgency captures
the time-sensitivity and criticality of a stakeholder’s claim.

The primary boundary condition for identification as a
stakeholder, of course, is whether an interaction actually af-
fects the parties and what kinds of claims the actors can rea-
sonably make upon each other. Here, we emphasize the term
reasonably; contestation and debate surround the central defi-
nitional and analytic questions concerning stakeholder legit-
imacy, and what kinds of influence, interdependencies and
dependencies characterize the stakeholders with interests in a
particular organization or public policy, abound. As AISCs are
new, largely unstudied and lacking in legal, social, or other
forms of legitimization processes, we focus our efforts on ur-
gency of claims, and power.
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3 Stakeholders
Although relationships between an organization and stake-
holders may be dyadic, segmented, and contractually speci-
fied in traditional supply chain analysis, many organizations
within AI supply chains have relationships with multiple inter-
dependent and often anonymous stakeholders, which produce
nearly simultaneous influences and actions. To enable, struc-
ture, or govern such non-dyadic relations and information
flows between entities in AI supply chains—for example, be-
tween model providers and downstream developers—requires
a map of the stakeholders that are involved and their roles
within the chain. Prior efforts to map the AI ecosystem include
Bommasani et al. [9] and Mozilla Foundation [58], though
these either do not take a stakeholder framing or fail to ac-
count for AISC interdependencies.

In following section, we describe “who” currently engages
with AISCs—the stakeholders that participate in or are imme-
diately affected by their use. Our categorization is the result
of engaging with several datasets [6, 8], and collecting or-
ganizational, service and product information from known
AISC-participating tech companies. A more extensive char-
acterization beyond what we provide here can be found in
Appendix A, and (inexhaustive) examples of vertical integra-
tion surfaced by these efforts can be found in Appendix B. In
the following section, we describe the classification schema,
illustrated in Figure 1, detailing the stakeholder categories by
their contributions to the supply chain.

3.1 Stakeholder Roles
We identify the various contributions and functions of indi-
viduals, firms, and organizations within the AISC by their
sector-agnostic role in the production and use of AI products
and services. Actors may adopt multiple roles, such as con-
tributing both underlying infrastructure, models, and products
directly to users and consumers, or may play a single role, such
as an end-user. In Section 6, we adopt an institutional lens to
account for the relational complexities between firms in varied
market settings. We focus this section on describing actors
that are endogenous to AISCs (i.e., they have a direct stake in
its function): those that are affected by, or contribute to, the
chain. This is in contrast to exogenous actors such regulatory
organizations, which may intervene in or study the AISC, but
are still nascent in shaping its form or function.

Infrastructure Providers furnish fundamental technologi-
cal tools and materials for building and operating AI systems.
This includes chip manufacturing, data centers, and cloud
services, all of which handle computation, storage, and net-
working at scale. Companies such as Amazon Web Services,
Microsoft Azure, and Google Cloud offer broad suites of inte-
grated products (e.g., compute instances, model deployment
services, security protocols) that shape downstream develop-
ment. Nearly all AI deployments depend on their products
for compute, storage, and network capabilities, making them
indispensable to downstream stakeholders.

Data Providers supply raw or processed information used
to train, fine-tune, and evaluate AI models, as well as drive
analytics. These providers can be platform owners (e.g., social
media sites) that collect first-party data or aggregators spe-
cializing in assembling and labeling large-scale datasets. Data
ownership and licensing are increasingly contested, especially
when data arises from user-generated content or sensitive do-
mains such as healthcare. Whether or not directly involved
with the models they serve, data providers exert significant
indirect influence over downstream outcomes.

Model Providers develop AI models, offering them to down-
stream stakeholders as standalone products or APIs. Providers
may release complete models for public use (e.g., EleutherAI,
Allen Institute for AI), allow restricted API access (e.g., OpenAI,
Meta), or form exclusive partnerships with other firms. The
scale of models, the resources they require, and their licensing
terms shape how easily downstream developers can adopt or
adapt them. Currently, a handful of well-resourced organiza-
tions dominate the creation of cutting-edge models. Smaller
actors focus on niche applications and build upon open-source
projects. In many cases, platform effects arise: model providers
that bundle developer tools, deployment pipelines, or special-
ized features can create lock-in for downstream developers.
Applications built around a particular model’s idiosyncrasies
may be costly to “transplant” to other ecosystems, thereby rein-
forcing concentration and incentivizing continuous adoption
of a single provider’s platform.

Intermediaries & AI Services offer specialized functions—
such as data processing, model fine-tuning, monitoring, or
deployment—that fit between existing data, models, and in-
frastructure providers. For example, a firm offering automated
data labeling tools integrates upstream raw data with down-
stream model training pipelines. They typically do not inter-
face directly with end-users; rather, they plug into the pipeline
to refine workflows, automate MLOps tasks, or assemble spe-
cialized services. As dependencies layer on top of one another,
these intermediaries can significantly increase the complexity
of AI supply chains. However, in many cases, infrastructure
giants supply these ancillary services.

User-Facing entities deliver AI’s functionality directly to
end-users through interfaces, applications, or APIs. Exam-
ples include chat platforms (e.g., Character.AI) that wrap large
language models in accessible tools, or all-in-one services
(e.g., Microsoft Office Co-Pilot) that embed AI across user
workflows. They often incorporate additional layers—such
as prompt-engineering guidelines or safe-mode settings—to
adapt a core model for particular uses. User-facing providers
depend on model providers and infrastructure services behind
the scenes, but they sit at the boundary between AI systems
and the public, and they heavily influence how models are
presented, interpreted, and used in practice.

Users & Consumers (individuals and organizations) engage
with AI systems—consciously or passively—through search
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engines, recommendation platforms, enterprise tools, or spe-
cialized applications. Whether they pay for or freely access AI
services, they often have limited visibility into upstream pro-
cesses. However, large enterprise users can exert notable influ-
ence over model and infrastructure providers, and individual
consumers commonly shape AISCs through their aggregated
behavior. As in any market or major social field, collective
demand influences the strategies of upstream suppliers, who
may adjust offerings individual or in partnership with other
to serve current or anticipated user interests, or regulatory
environments, should they develop. Notably, users’ expertise,
use volume, and economic situations vary widely, making
consumers a highly heterogeneous but central influence in
AISCs.

4 Mechanisms of Harm in AI Supply Chains
AI poses sizeable and significant risks, as prior work has high-
lighted, including reifying existing power imbalances while
exacerbating social inequalities [75]. Descriptions of AI risks
have typically focused on the risks to individuals and specific
demographic groups. For example, allocative risks—in which
algorithmic bias may lead to resource or opportunity distribu-
tion (e.g., in hiring or loan approvals), potentially disadvan-
taging specific social groups—is distinguished from represen-
tational risks—wherein algorithms may reinforce stereotypes
or discrimination against specific groups, and which is turn
contrasted with explanatory risks, in which individuals are
unable to understand how decisions were made [54].

Recent reports from government agencies have expanded
upon these definitions to frame investigative efforts and shape
priorities for possible AI regulatory initiatives. For example,
the U.S. National Institute for Standards and Technology (NIST)
Artificial Intelligence Risk Management Framework [2] offers
a set of risks that range from increased ease in developing
weaponizable products (chemical or otherwise), to data pri-
vacy and AI’s environmental impacts. These characterizations
do not account for the risks faced by organizations, and, per-
haps more critically, do not (yet) encompass specific risks
surfaced by AI supply chains (though AI [2] points out that
risks do exist). To this end, we recapitulate mechanisms of
AI-induced or exacerbated harms in Table 1, noting possible
consequences for individuals, organizations, and systems. Dis-
tinguishing between such scales [ individuals, organizations,
systems ] emphasizes that how harm is experienced, attrib-
uted, and addressed will vary across the setting in which the
harm occurs, and mirrors common social, organizational, and
regulatory science groupings [39, 73]. Our aim is to articulate
how known harms are expressed through or compounded by
AISC structures.

While threats to national security and public safety are
critical, our interests in this work lie with the day-to-day con-
cerns of stakeholders. Our list compiles previously collected
mechanisms of harm that may be explicitly affected by the
introduction of AISCs. Mechanisms that are afforded by AISCs,
and thus are in many ways new to AI, are in bold. In Table

1, we summarize how AI supply chains can add additional
complexity to known AI risks and may introduce new mecha-
nisms of harm. 3 Engineered systems like AISCs are not inher-
ently static—there will be updates, changes, and new priorities
adopted across any given AISC. Performance variability is a
natural result of complex systems [36], and this, along with
the priors already posed in AI development, poses risks for
organizations, systems, and individuals. As stakeholders in-
terface with AI supply chains, these risks will be realized as
harms.

4.1 False Content
False content, for example, has led to misrepresentation, mis-
information, and harassment—with consequences to employ-
ment, reputation, and bodily autonomy [69, 78]. Customers of
banks that adopt voice identification verification, for example,
face a growing security threat from voice cloning [57]. Orga-
nizations experience reputational and economic consequences
frommisinformation both indirectly or directly: 4: misinforma-
tion shapes “misperceptions”, which in turn affect firm valua-
tions [5]. Systemically, widely circulating AI-generated false
content has normalized public skepticism concerning not only
particular factual claims but the possibilities of truthfulness
per se, feeding widespread loss of trust in public institutions,
political processes as well as specific organizations [47]. Con-
sider ‘swat’ attacks as another example of misinformation. In a
swat attack, a person intentionally creates a synthetic, realistic
voice, calls the police and to falsely reports a bomb in a school,
hospital or other public space. The police, respond by clos-
ing down schools and hospitals with accompany community
disruption. Some such attacks also target individual homes
or organizations, generating and escalating fears, rather than
confidence, in the protective agencies of the police. [40].

AI supply chains can amplify the avenues of harm caused
by false content in several ways: first, other AI systems or
AI agents may prompt generation of content or deepfakes,
escalating the scale of production with minimal friction or
human overview. In this case, an agent may interface with a
generative model to produce the false content. Second, false
generated content may be adopted into a training set. For ex-
ample, content may be incorporated into platforms or search
results. This may emphasize its rhetorical force and legitimacy
to individuals, particularly when it is challenging to critique
or evaluate. The ease of generation and the interdependen-
cies of AI systems may then enable said content to proliferate

3Not all AI-related harms are explicitly reshaped by AI supply chains. Human-
machine emotional entanglement, in which individuals form deep attachments
to AI systems, overreliance, where users or organizations become excessively
dependent on AI to the detriment of their own competencies or critical thinking,
and the normalization of AI-induced harms, in which stakeholders gradually
accept detrimental AI outcomes as unavoidable, are important concerns for AI
broadly. However, these particular mechanisms emerge from broader human and
organizational relationships with AI and persist even in simple AI deployments,
thus are excluded.
4AirCanada’s recent arguments regarding chatbot liability following customers
being misinformed on company policies, and the effects of fake information
about explosions at the White House causing the S&P 500 to lose more than
$130 billion in market capitalisation [44] offer two examples.
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Table 1: Mechanisms of Harm in AI & AISC

Mechanism of Harm Individuals & Groups Organizations Systems

False Content Harassment, misrepresentation, mis-
information

Harm to reputation and autonomy Reduced social trust

Biased Decision Making Economic harms, discrimination, rep-
resentational harms

Undesirable performance, economic
harms

Magnification of systemic weaknesses

Poor Explanations Lack of liability or recourse, explana-
tory harms

Minimal liability pathways Reduced traceability

Data Scraping Privacy violations, IP infringement Economic harm Reduced traceability, unclear owner-
ship

Security & Data Privacy Privacy violations Data breaches Risk of system failure

Environmental Physiological, economic harms Economic Environmental degradation

Diffused Responsibility Minimal liability pathways Minimal liability pathways Reduced trust, lack of standards

Reduced Optionality Economic harms, loss of choice Economic harms, harm to autonomy Reduced innovation

Homogenization Loss of choice Security vulnerabilities Reduced resilience

across platforms, systems, and modalities, reinforcing the false
material. As the misinformation mushrooms, it may be incor-
porated directly into training sets through leaky avenues of
data collection. Similarly, the content may be incorporated
into prompts that are used to reinforce a model. In banking, a
voice clone might be used to interact more frequently with a
bank than the true customer. With time, these samples might
reinforce the clone as “real” and the person as “fake”. If not
salient to model developers or their upstream and downstream
partners, content may thus be re-generated, amplified, or may
subtly reinforce undesirable behavior.

4.2 Biased Decision Making
Biased decision making has economic and material conse-
quences ranging from misdiagnoses to inequitable bail deci-
sions. Bias in one AI component can propagate across the
AISC: this is because what is learned upstream will have effects
downstream. In other words, upstream decisions shape down-
stream outcomes [38]. AI supply chains have already been
shown to bias housing recommendations [50], and have ample
opportunity to produce similar inequalities in other material
and social settings. And the influence of upstream decisions
may be exterted in less direct ways. Consider a retail company
that contracts a chatbot vendor for customer support. The
upstream model’s safety mechanisms lead to refusals for in-
quiries that are reasonable within the retail setting—cleaners,
BB guns, or sex toys—but that are topically not acceptable
to the model provider, exacerbating customer frustration and
churn. Alternatively, upstream and downstream datasets may
interact in unexpected ways. For example, overlap in datasets
introduced at different points of an AISC may lead to calibra-
tion errors in downstream systems that disproportionately
affect certain subpopulations. When deployed in regulated

industries like finance or healthcare, the resulting adverse ac-
tion may trigger regulatory intervention. Without targeted
disclosures of system design decisions, downstram developers
will struggle to recognize biasing effects across the AISC.

4.3 Poor Explanations
Poor explanations challenge the fundamental transparency
necessary for supply chain and market transactions. Many
AI systems, especially those based on deep learning, function
as “black boxes,” where even model developers struggle to
interpret decision processes [49]. Proposed solutions abound,
including local explanations, saliency mapping, and mecha-
nistic interpretability, though poor robustness or high costs of
computing can render them unreliable or intractable at scale.
And challenges in understanding the resulting explanations
can be significant, even in inherently explainable machine
learning architectures [37]. Such opacity hinders users’ un-
derstanding of why a decision was made, in turn challenging
responsibility attribution to either the developers, deployers,
or the AI system itself [82]. This has immediate consequences
for how harms can be responded to, and is a themewe revisit in
our case studies. When AI systems produce poor explanations,
it is challenging to identify and address erroneous aspects of
algorithms or training data.

This raises legal and ethical concerns when individuals
are adversely affected by AI decisions without sufficient ex-
planation to motivate redress. Affected individuals cannot
effectively challenge or appeal AI-driven decisions without
an adequate understanding of the underlying reasoning. Nor
can they learn from or target their behavior to change an out-
come. An AI-driven hiring tool may reject candidates without
providing meaningful feedback, leaving applicants unable to
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address or understand deficiencies, or an automated loan de-
nial might not present the actual feature that led to rejection.
In both settings, existing regulation tends towards requiring
an explanation.

AI supply chains further exacerbate issues of traceability
and explanations, in part because there are few to no standards
on how to design for these features across organizational or
compositional boundaries. If an output is the result of multiple
AI systems, should an explanation be a composition of indi-
vidual explanations? Is the last-most model’s explanation suf-
ficient? Would any of these forms of explanation be accurate?
Regardless of efficacy, AISCs are frequently the result of out-
sourcing to other organizations. Dependencies on proprietary
AI services or upstream AI models can prevent traceability be-
yond a single entity [38]. The large scale and domain-agnostic
manner in which AI models operate heightens the stakes: any
errors or harms are “liable to reoccur across use cases” [75].
We know from historical experience since WWII, in the cre-
ation of the global monetary system and financial markets,
that a rules-based regime (even in a vast system of high-speed
highly technical transactions) depends on differentiated levels
of secure transparency. Yet standard mechanisms in which to
audit or trace across AISCs do not exist.

4.4 Data Scraping
Data scraping has fed the scale of growth for AI models, com-
panies, and AI supply chains. While scraping user data from
websites can infringe on privacy rights and regulations like
GDPR, CCPA, or HIPAA, major legal tensions have centered
on whether AI developers bear liability for training their mod-
els on copyrighted datasets, even if those datasets are publicly
accessible online. Merely scraping publicly accessible data
does not exempt developers from copyright obligations; in-
stead, courts have begun scrutinizing if the use of such data is
transformative and proportionate under fair use doctrine. If a
model’s outputs closely replicate original works, it may con-
stitute infringement. Under doctrines like contributory and
vicarious liability, companies that facilitate scraping could be
held accountable for downstream violations [48].

The scale of data scraping has led to frictions in vetting
the legality of data sources and obtaining necessary licenses
for proprietary content. In response, a number of high profile,
exclusive licensing by model providers with news and other
literary sources, including between Meta and Reuters [66],
OpenAI with Wall Street Journal and AP News, Google Gem-
ini with AP News [88] (at least the former with the intention
of integrating real time, vetted news sources for rapid model
updates), and Microsoft with HarperCollins [19]. Even out-
side explicitly protected content, licensing with social media
companies (when not already one) for training data has also
become relevant, as shown by Google and Reddit’s agreement
in 2024 [34]. These contracts are increasingly bidirectional in
services rendered: for example, Axios now provides stories
and training data to OpenAI, which in turn serves its tech-
nology for creating and distributing journalism—and funding

local newsrooms [23]. It is unclear how these dynamics affect
the landscape of journalism, but the consolidation of licensing
agreements does not necessarily preclude webscraping and
raises questions of power concentration and homogenization
of literary and news content.

4.5 Security & Data Privacy
At the organizational level, security and data privacy are con-
cerns that are only escalated by AISCs. Consider the costs of
data breaches and cyberattacks against healthcare, finance,
retail, manufacturing, energy and government agencies have
been estimated to be over $10.5 trillion [22, 35]. While large
firms are investing in new forms of cyber security, small firms
struggle to mobilize affordable security strategies. In 2023
alone, Samsung, 23 & Me, Walmart, DuoLingo, Microsoft, T-
Mobile, Discord, Eye4Fraud, Chick-fil-A, Verizon, and Google
Fi among many others reported data breaches exposing the fi-
nancial and personal information of users, clients, and employ-
ees. Access to this information creates substantial risks, includ-
ing credential-stuffing attacks, phishing schemes, and unau-
thorized account access. While the risks of cyber-attacks are
known, AI supply chains require us to revisit how they might
surface. Data poisoning and security breaches via open mod-
els grow more common [10]. Linkage attacks [4, 53], where
multiple sources of information are used in corroboration to
identify individuals or groups, may be re-appropriated to AI
supply chains. As new AI models and datasets are introduced
into the AI supply chain, the possibility of such attacks may
grow, with such consequences as de-anonymization, identity
theft, increased robocalls 5 [20] and fraud [41], often targeting
older, vulnerable populations . 6

4.6 Environmental Impacts
The environmental impacts of increased AI adoption, exacer-
bated by AISCs, are a growing concern, highlighting a cur-
rent rift between AI-driven economic growth and sustain-
ability. On January 15, 2025, Google announced that Google
Workspace was integrating its advanced AI capabilities di-
rectly into Business and Enterprise plans. The announcement
described how “AI enhancements” for business services, includ-
ing Gmail, Docs, Sheets, Meet, Gemini and Chat, are adopted
and priced [17]; rather than opt-in, customers could not opt out.
Each customer on a workspace plan pays $2 a month more
to benefit (a relative bargain for an otherwise more costly
product like Gemini). This expansive shift reflects common de-
cisions made by tech-forward companies to integrate AI across
and between products, and is tractable at this scale because of
existing vertical integrations. While there are ways to reduce
how resource-heavy a given model is (e.g., small models are
less computationally intensive), implementing AI where AI

5Case in point, the FCC recently fined Lingo Telecom $1 million for transmitting
AI-generated robocalls that imitated President Joe Biden’s voice [21].
6Nearly half the complainants to the FBI’s internet crime complaint center
reported to be over 60 and experienced 58% of the losses (nearly $770 million).
For context, only 1̃7.3% of the US population is over 65 [80].
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toolingmay not be wanted does not align with collective stake-
holder interest. These systems are developed and deployed
using resources that require meaningful water, electric, and
mineral consumption; yet AISCs encourage AI use in broader
contexts than previously seen. As norms in AI-use shift rapidly,
reports of new data center developments—increasingly owned
by cloud, hardware, and model providers—and their burden
on local communities abound [81].

4.7 Diffused Responsibility
Diffused responsibility arises when development and use of an
AI system are spread across multiple teams and organizations,
and no single entity holds full accountability for its outcomes.
This is particularly pronounced when core AI components
are externally sourced or licensed; an update to a base model
or a training dataset might propagate new biases or errors
down to a product that integrates it, without the deploying
organization’s knowledge or ability to reverse the change. As
control is partitioned among various entities, each upstream
or downstream step in the chain can obscure who is liable
for harmful outcomes. A downstream organization might, for
instance, claim that any problematic changes stem from the
upstream provider, while the upstream provider could insist
that those issues are rooted in how the model was integrated
into the downstream product. With few standards of practice
or robust record-keeping across the chain, tracing the precise
point of failure—or the party with the power to remediate it—
becomes difficult. Together, these dynamics create a “nobody’s
fault” environment wherein accountability is diffuse, and each
participant plausibly redirecta blame to other parts of the
supply chain.

This fragmentation leads to practical consequences for re-
solving harms. Individuals who experience harmmay be passed
from one technical support channel to another in a fruitless
attempt to find redress. Meanwhile, organizations themselves
risk compounding liability; not only may they bear the fallout
from unmet contractual obligations or compliance violations,
but they also shoulder reputational damage from problems
that originate elsewhere in the supply chain. Systemically,
the lack of clear accountability erodes trust in AI-driven pro-
cesses and complicates oversight. AI supply chains can thus
obscure lines of accountability, introducing significant friction
in rectifying harms.

4.8 Reduced Optionality
Reduced optionality describes the gradual erosion of choice in
AISCs—both in selecting AI services and in negotiating how
they are provided. This reduction in optionality stems largely
from the consolidation of AI capabilities, especially large foun-
dation models, within a small set of upstream providers. It’s a
common phenomenon in traditional supply chains but is new
to AI. Only a few companies possess the resources (massive
datasets, specialized hardware, highly skilled researchers) to
develop and maintain billion-parameter-scale models. As more

organizations rely on these incumbents’ APIs or toolchains,
the “lock-in” effect is compounded.

High switching cost associated with AI integrations can
drive reduced optionality. Unlike generic software, large-scale
model use can be tightly coupled with unique feature de-
pendencies (e.g., upstream embeddings), which along with
architecture and tuning decisions, introduce priors down-
stream developers may not have access to. Migrating to a
new provider may require (costly) retraining and evaluation
or adapting core components of an application, rebuilding
engineering workflows, and retraining staff. These logistical
burdens may deter even well-resourced organizations from
switching. Adding to the difficulty, manymodel providers offer
“bundled” services—analytics, developer tools, proprietary op-
timization frameworks—that become integral to a company’s
operations. Exiting the ecosystem may mean overhauling mul-
tiple interdependent layers of technology.

From a legal perspective, reduced optionality may intro-
duce frictions when negotiating contracts that clarify liability
or guarantee acceptable performance. Model providers can
use opaque or non-negotiable terms that disclaim responsibil-
ity, leaving downstream entities to absorb both reputational
and regulatory risks. Lack of meaningful competition means
there is scant market pressure to offer more transparent or
balanced liability clauses. Should a model malfunction due to
bias, security breaches, or even simple outages, downstream
adopters may have no viable path forward; industries as di-
verse as e-commerce, healthcare, finance, and education may
find themselves simultaneously reliant on the same small set
of providers with few redundancies, magnifying any single
failure into a potential system-wide crisis.

4.9 Homogenization
Homogenization refers to the convergence of AI outputs, pro-
cesses, or architectures toward a narrower range of possibili-
ties, to the detriment of innovative competition and resilience.
In the context of AI supply chains, homogenization can mani-
fest at multiple levels. First, companies may repeatedly adopt
the same tokenizers, base models, training data, or architec-
tures, leading to a limited set of downstream applications
that are structurally and behaviorally similar. Prior work on
algorithmic monocultures has illustrated the negative con-
sequences of this phenomenon [7, 46], which occurs in part
because organizations favor “proven” AI systems, or because a
small handful of large providers dominate the market. At scale,
such convergence can reduce competition, restrain creative
exploration, and shape user experiences toward a uniform and
potentially stale set of interactions [42]. In an AISC, repeat-
edly outsourcing or licensing these same base models further
concentrates design choices, propegating this similarity to
downstream products.

In AI components, a particularly acute form of homoge-
nization emerges when AI-generated content is re-ingested
as either training data or as inputs to another AI system. One
example of this is mode collapse, well-studied in GANs [31]
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and increasingly in LLMs [71], wherein a system’s outputs
converge to a reduced set of high-probability variants. This can
result in the long tail of more creative, infrequent, or context-
specific expressions effectively disappearing over time. Such
homogenization shrinks the expressive capacity of AI and in-
creases systemic fragility: if a single model or dataset harbors
inherent strong biases or vulnerabilities, these flaws may be
disseminated throughout an entire ecosystem. Thus homoge-
nization, especially in complex AI supply chains, may dimin-
ish both resilience and representational breadth, reinforcing
shared error modes and limiting the diversity of AI-driven
innovation.

5 Redress Typology
Risk that surfaces as a result of adopting new technology is
in many ways “old hat”; this is the focus of risk and resilience
literature in both engineering and management, which seeks
to reduce the dislocations and inefficiencies that result from
systemic, organizational, or technological transitions [36, 56].
These dislocations are risks, or potential harms, to participants
of a system. Unfortunately, harm—whether economic, emo-
tional, physical, or reputational—is not always preventable.
Instead, it is often in the subsequent response to said harm
where intervention is possible.

Defining, interrogating, or implementing redress is the fo-
cus of multiple disciplines that operationalize various schemas
to identify what is appropriate or valuable in distinct soci-
eties [51]. Terms such as recourse, reparations, restitution,
resolution, recovery, repair, and redress (among others) often
hold similar meaning in popular discourse, yet distinct refer-
ents to specialized and professional audiences [1, 30, 62, 65].
The substance of tort law is concentrated on just these topics,
identifying the grounds of responsibility and response for in-
juries. Insolvency law similarly establishes procedures such
as credit recovery claims, where the distribution of assets is
dependent on judicial determination of stakeholders’ status
and injury in relation to the insolvent party. Restitution, and
reparation, typically encompass attempts to address systemic
harms by restoring and/or compensating for losses—e.g., as
reparative act to historical oppression (though reparations has
broader applications in legal justice) [16, 67]. In the scope of
AI, recourse is defined as the actions a prediction recipient can
take to reverse a given decision [79], but is referenced beyond
the domain as steps taken to fix an erroneous outcome by
involved party/ies [28, 72]. Simply recognizing responsibility
has, by some, been ascribed as a form of redress wherein a
perpetrating party acknowledges responsibility [29, 32, 77].
We posit that recognition of a harm—if not necessarily by the
responsible party—is a prerequisite to any act of redress, and
do not include it in our typology.

Despite the variation in terminology and application, there
are limited forms in which to seek redressment. While work
in law and machine learning has described actions that can be
taken when a harm occurs, there is no schema collating the

diversity of perspectives and positions. To this end, we con-
tribute a typology distinguishing avenues of redress (shown
in Figure 1): recourse—in which the harm is halted either
through an action by the agent responsible or the entity that
is harmed; repair—in which the harm is corrected with the
intention of returning the harmed party to a prior state; repa-
ration, in which there is compensation for the harm; and
prevention—in which the harm is proactively mitigated be-
fore it occurs. Our typology is a logical synthesis produced
through conceptual comparison and alignment—for example,
linking “reparation” in transitional justice to “compensation”
in consumer harms.

Differences in status are most resonant when we consider
how a harm experienced by one actor is responded to by a
responsible party [52]. Stakeholders can and will have un-
equal bargaining positions. Downstream entities may have
little leverage when confronted by an integrated or special-
ized model provider that holds a monopoly or a vital data
resource. In contrast, if more competitive settings or regula-
tory oversight exists, injured parties will have more influence
to demand timely repairs or seek reparation.Whether a redress
is achieved in an AI supply chain is determined by two con-
siderations: consensus, whether necessary actors agree upon
(or are effectively compelled to accept) a proposed remedy,
and achievability, in that the redress is [physically, techni-
cally, legally] possible given the involved parties’ and systems’
limitations. Even if a technically viable fix exists, entrenched
power and perceived urgency with regards to stakeholder re-
lations influences how quickly and fully any redress will be
pursued. If halting a harm (recourse) or compensating for dam-
ages (reparations) is theoretically warranted, a stakeholder
may still lack the technical or financial standing to implement
the fix, or a suitable legal framework to enforce it.

As discussed in Section 2, stakeholders may play multiple
roles in AISCs. Power differentials, the extent and mechanism
by which harms are realized or perpetrated against stakehold-
ers, and the urgency of demands thus reflect these variations—
and inform the type, extent, and feasibility of redress. In the
following section, we consider how redress is informed by the
positionality between redress seeker and enactor (i.e., consen-
sus and achievability), characterizing how forms of integration
might enable or otherwise disable redress between stakehold-
ers in an AISC.

6 Market Configurations
Concentration in AI supply chains creates inefficiencies, in-
stabilities, and significant power asymmetries that exacerbate
the existing risks posed by AI. Power differentials shape stake-
holder relationships in ways that inform the forms of redress
provided in response to harms. Redress will vary across AI
supply chain contexts. A response may not be technically or
fiscally achievable, or be constrained by poor traceability, or
the stakeholders involved in the harm may not reach consen-
sus on what is a reasonable form of response. In other settings,
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the power differentials among involved parties, and the sig-
nificance and urgency of a harm may affect whether and how
consensus is reached. In this section, we consider how a set
of harms across a single AISC is responded to when different
market configurations are at play. We do so to understand
the distinct challenges that concentrated power (i.e. oligopoly,
monopoly, or monopsony) poses for AI supply chains, and
to inform alternatives in the future. We focus on three mar-
ket configurations: vertical integration, horizontal integration,
and the free (or openly competitive) market.

Vertical Integration. In a vertically integrated market, a sin-
gle firm controls the entire production chain—from extract-
ing raw materials to manufacturing, distribution, and final
delivery—thereby creating a monopoly. In contrast, our set-
ting involves a vertically integrated firm operating within a
larger market (Figure 2 A). Though this firm manages its own
end-to-end supply chain, it competes alongside other firms
(which may also be vertically integrated). In such a market,
one firm does not necessarily dominate all activity; instead,
there may be a small number of powerful, vertically integrated
competitors. A classic example is the American automobile
industry in the mid-20th century, when a handful of dominant,
vertically integrated automakers each managed its own supply
chain while still competing with one another.

Horizontal Integration. A horizontally integrated firm (Fig-
ure 2 B) single-handedly (or by merging with other groups)
expands its market power and offerings to control particular
form of provisions in the supply chain level. In AISCs, this
may be any stakeholder role (such as model providers), and
it may also be a stakeholder role in a specific domain (such
as computer vision model providers). Though the rest of the
supply chain remains competitive, the firm maintains control
over the production process it operates. This contrasts with a
vertically integrated firm that spans (and does not necessarily
control) the entire supply chain. Prominent examples include
Carnegie Steel (now U.S. Steel) and Rockefeller’s Oil Company
(ExxonMobile, among others).

Free Market. In a free market (Figure 2 C), many small firms
produce substitutable goods, and no individual firm is able
to control pricing. Prices are determined by market supply
and demand, and firms act as price takers. While barriers to
entry or exit might influence firm costs, in principle costs de-
rive from the particular capital, organizational, and material
circumstances of particular firms who operate with compa-
rable knowledge of market conditions. The variation present
in the restaurant industry is a prominent example of a highly
competitive free market.

7 Healthcare Case Study
Consider a hypothetical AISC for healthcare diagnostics, illus-
trated in Figure 2. There are four stakeholders: (A) an electronic
health record (EHR) platform, acting as both data provider and
intermediary between other stakeholders, (B) a model provider
that serves a voice-to-text AI model for transcribing patient

visits and doctor dictation, (C) a model provider of an AI sepsis
product used for supporting patient triage, (D) hospitals, and
expert and non-expert users—that is, doctors and their patients.
In this setting, the sepsis model from C is under a trial run with
several hospitals (D) under short-term contracts where the
hospitals renew based on continued performance. The model
interfaces with the EHR system from (A), which provides as-
pects of patient health to inform their risk rating. The hospital
is also contracted with the voice-to-text provider (B), which is
conveniently integrated into the EHR system (for now, we will
put aside the fact that (B) may also have upstream dependen-
cies, e.g., may be fine-tuned from an upstream model). When a
doctor visits with a patient, the patient’s records are updated
by (B) to include changes from the visit.

The EHR system provides patient information to the sep-
sis model and is updated by the voice-to-text model. When
(B) updates its voice-to-text model, improving overall per-
formance, the update introduces an uncaught bias: now, the
model is worse at correctly translating a small number of med-
ical terms for doctors with certain accents. This distribution
shift, though small, has cascading effects. The sepsis model
(C) no longer accurately reflects patient sepsis risk in some
hospitals—leading to reduced responsiveness by doctors to
high risk cases and, critically to (C)’s interests, causing several
hospitals to not renew their contract, reducing profits. The
voice-to-text provider has fiscally impacted the sepsis model
provider by changing a product, with cascading consequences
for patient health and hospital reputation.

There are several mechanisms of harm that inform this
scenario: biased decision making by an upstream provider’s
model has shifted aspects of data that the downstream sepsis
model provider uses as input, while dispersed responsibility
and poor traceability may make it difficult for either A, B, C,
or D to isolate the cause of the sepsis model’s failure. Without
proper incentives across stakeholders, it may not be possi-
ble to uncover what initiated the failure. If steps to isolate
and respond appropriately are not taken in a timely manner,
the effects may propagate across the AI supply chain: biased
outputs from the voice-to-text model may eventually be incor-
porated into future training data, or the sepsis model’s poor
performance may be reinforced through iterative updates. Ad-
dressing the harm requires changes across multiple layers.
Biases can become systemic, making short-term fixes insuffi-
cient, and the complexity may paralyze efforts for recourse,
repair, & prevention.

Though more extreme cases may arise, seemingly minor
upstream changes—like the one described—can trigger dis-
proportionately large and harmful downstream effects; faulty
software updates from cybersecurity company CrowdStrike,
for example, caused millions of travelers to be grounded in July
2024, leading both SouthWest and Delta to sue CrowdStrike
for hundreds of million in damages—despite existing best prac-
tices in software development and digital supply chains. Yet
best practices do not exist for AISCs. So, what forms of re-
dress are there for the sepsis model provider, the hospitals,
and customers?
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Figure 2: General AISC and sepsis model AISC are shown under vertical integration, horizontal integration, and the
free market.

As mentioned in Section 5, redress occurs when it is achiev-
able and there is consensus between involved parties. The
extent of the redress depends on the significance of the harm
and the power of the affected stakeholders. In an ideal setting,
not only is the harm stopped (recourse) and fixed (repair),
and damages such as pain and lost income are compensated
for (reparation), and the harm is learned from to prevent sim-
ilar events in the future (prevention). Below, we detail the
roles and incentives of each stakeholder group participating
in the AISC before discussing how the AISC’s structure affects
stakeholders’ ability to implement redress.

(A) EHR Platform. As both an intermediary and a data
provider, the EHR platform interfaces directly with each stake-
holder. Their priority is to ensure that there are no failures on
the part of their system, and that they are not liable for the
failures of the other stakeholders. If the EHR organization is
not integrated with other levels of the AISC, their participa-
tion in redress is as a potential mediator or in collaboration
with other stakeholders. As the EHR system interfaces with all
stakeholders, implementing AISC-wide forms of traceability
such as disclosures or benchmarking to support minimally
harmful updates requires their buy-in.

(B) Voice-to-text model provider. It is possible that B is not
aware of their impact on the sepsis model provider (C). They
are incentivized to improve their own product offerings, while
minimizing avenues of redress that could lead to losses or
the sharing of proprietary information. If there is sufficient
traceability across the AISC, they may be held liable for re-
dressments. While they may support collaborative efforts to
prevent future negative outcomes, other forms of redress are
antithetical to their interests.

(C) Sepsis model provider. The sepsis model provider may
lose the FDA medical clearance that allows them to operate,
may lose customers, and could be sued by patients or hospitals.
They desire a functional product and to reduce costs associ-
ated with their model’s poor performance, yet they may not
be aware of the existence of an upstream stakeholder, or that
their product was impacted by an upstream change. If C is able
to trace what caused their model’s dysfunction, there are sev-
eral actions they might take. First, they may opt for recourse,
stopping the effects of the upstream voice-to-text model by
no longer using dictated doctor notes or requesting that its
provider reverts to an older version of the model. Alternatively,
they may seek repairs in their upstream dependencies (e.g.,
voice-to-text performance is improved through an update) or
by ensuring their model is robust to upstream changes. They
may look for reparations given income or reputational losses.
Finally, preventing re-occurrences might involve evaluation
or disclosures implemented across AISC deployed updates.

(D) Hospitals & Patients. Hospitals and patients desire func-
tioning products that do not lead to poor healthcare. To this
end, hospitals may stop a harm from continuing (recourse)
by discontinuing model use. This might be for sepsis and/or
voice-to-text models, at least until action is taken to repair
the undesired behavior. Hospitals and patients may seek repa-
rations for damages (reputational, fiscal, physiological, etc.).
This may be pursued through provider-customer problem res-
olution (for hospitals) such as licensing discounts or through
legal action to receive monetary compensation (hospitals and
patients). Who provides reparation, and if reparation is even
possible, depends on if the harm is traceable (and thus the
responsible party is clear), the dynamics of the AISC, and the
urgency of the harm. Preventing future similar harms from
happening may be difficult if the stakeholders are either not
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aware of each other or will not collaborate, though the hos-
pital may simply adopt policies or request tooling to reduce
reliance on the models.

The AISC’s structure affects whether the response is materi-
ally achievabile. Similarly, market dynamics shapping the AI
supply chain will influence the consensus determining if a re-
sponse will be taken. Below, we discuss how markets yield dif-
ferent transparencies, costs, and bargaining positions, which
in turn condition the available responses.

7.1 Vertical Integration
Consider the AISCwith vertical integration (Figure 2 A).While
there are other vertically integrated competitors, interoperabil-
ity between components does not non-existent. 7. This form
of integration has several consequences. First, competing with
a single product is difficult. As a result, competitors will also
have vertically integrated offerings, reducing optionality for
hospitals to select what AI products and services best suit their
performance requirements. While this outcome aligns with
established economic theory, its implications for AISCs are dis-
tinct. When multiple systems are tightly interconnected, iden-
tifying and addressing specific errors becomes increasingly
complex. This complexity is magnified in data/model pipelines,
and further exacerbated by systems like multimodal models
[15]. Homogenization in the integrated ecosystem limits the
variety of approaches available to mitigate robustness issues.
A single monolith may rely on a unified architecture, which,
while efficient, makes the system more vulnerable to system-
atic errors. These models add layers of opacity to already
complex systems, making explanations that can be mapped
causally across modalities difficult. Vertical integration, with
its resources and unified interests, can encourage increased
cross-modality AI.

Second, redress is dominated by the priorities of the inte-
grated provider. As vertical integration limits the ability of
non-integrated stakeholders (e.g., hospitals) to reject individ-
ual features within a bundled offering, recourse is constrained.
Switching providers is less viable due to the prohibitive cost,
complexity, and disruption such a transition entails. There
is one monolith aware of each participating product in the
AISC, suggesting repairs may be more tractable due to the
provider’s control over the entire ecosystem. Rather than re-
quire isolating failures, for example, the integrated firm can
instead rely on large scale processes for deployment processes,
including A/B testing. Providers, shielded by their control of
the ecosystem, have little incentive to admit fault or offer com-
pensation. In our scenario, a voice-to-text model misinterprets
clinical inputs leading a downstream sepsis model to make
inaccurate predictions. When a harm is incurred, the provider
may more easily deflect blame or argue that the issue lies with
7Note that this form of vertical integration is canon to the AISC; model providers,
infrastructure providers (both in cloud services and chip manufacturing), and
data-cum-model providers such as social media companies alike have initi-
ated integrations for all other stakeholders (except users of course). For inter-
ested readers, a compilation of vertically integrated examples is included in the
Appendix.

the hospital’s implementation rather than the product itself.
Prioritizing internal efficiency over explanations or externally
accountable mechanisms creates barriers for hospitals and
patients seeking reparations. Further, repairs are driven by the
provider’s business goals rather than the needs of hospitals
or patients. Misalignments between the integrated firm and
its customers may leads to delays, incomplete solutions, or
fixes aimed at a broader customer base rather than addressing
localized harm. Unless the harm is sufficiently urgent—patient
health outcomes widely worse, or regulatory intervention is
being considered—it will be deprioritized. Because decisions
are unilaterally made by the integrated provider and are hid-
den by vertical walls, other actors have little power and fewer
avenues for redress.

7.2 Horizontal Integration
In a horizontally integrated AISC (Figure 2 B), the sepsis, voice-
to-text, and other upstream models are controlled by a single
provider, while EHR systems and hospitals remain indepen-
dent. In vertically integrated systems, managing updates and
resolving dependencies is relatively straightforward—limited
only by technical constraints—but external transparency is
absent unless mandated by regulation. In contrast, horizontal
integration introduces an intermediary layer: the EHR system,
which can observe changes from individual ML models. This
position may aid in identifying harmful changes and negoti-
ating repairs. Limited competition can reduce incentives for
providers to offer meaningful redress, however, especially if
hospitals lack alternatives. For example, providers may bundle
services, preventing hospitals from opting out of individual
models. Thus, recourse may still require abandoning the entire
bundle rather than just the faulty component.

A key difference between horizontal and vertical markets
lies in the implementation of preventative strategies. In ver-
tically integrated systems, the entity developing AI models
also owns or directly manages the downstream systems in
which those models are deployed. This structural alignment
simplifies coordination: as the same organization bears the
cost of both failures and fixes, preventative strategies—such as
version control, staged rollouts, or pre-deployment testing—
can be implemented unilaterally and prioritized according to
internal objectives. However, this arrangement may not align
with the needs of external stakeholders such as hospitals or
patients, and it typically lacks external transparency unless
mandated by regulation.

In contrast, horizontally integrated systems distribute re-
sponsibility across organizational boundaries: model devel-
opers, EHR vendors, and hospitals each control a different
segment of the AISC pipeline. This fragmentation can intro-
duce friction in adjudicating competing priorities—particularly
when safety, usability, and liability span across entities with
unequal power and incentives. Yet, if there is an intermedi-
ary layer—the EHR vendor, in this example—this integration
also offers a unique advantage: greater visibility into both up-
stream model behavior and downstream clinical impact. This
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positioning creates new opportunities for transparency and
monitoring that are often unavailable in vertically integrated
systems. While the EHR may lack direct control over mod-
els, it may instrument tools to detect harmful changes early
and facilitate redress, provided that the necessary incentives,
infrastructure, and cooperation are in place.

7.3 Free Market
In a free market, external transparency and traceability are de-
termined by buy-in from stakeholders, their IP concerns, and
the technical expressiveness or reliability of model outputs
(e.g., predictions or generated content). Unlike in horizontal
and vertical integration, which can implement internal sys-
tems aligned with business priorities, free market participants
may struggle with avenues of redress that work, as the lack
of integration can reduce transparency between roles in the
AISC. In our example, the hospital decides to individually con-
tract with each model provider. If they are dissatisfied with the
outcomes of the sepsis model, they can achieve recourse by
switching to another. This will not change the performance of
the voice-to-text model, however, and if the new sepsis model
is dependent on the same unchanged voice-to-text model, the
switch may not help. For this reason, repairs may be difficult
without AISC transparency. If explanations are viable and all
actors are known, reparation through litigation is relatively
straightforward: actors know who is involved, and explana-
tions are available to attribute liability. When the market con-
sists of independent, non-integrated firms, and few standards
to enforce transparency, actors in the AISCmight not be aware
of each other.

Resulting information asymmetries across AISCs can en-
able integration, particularly under unprotected free market
settings [3, 60]. For example, details about AISC configura-
tions may be known to one stakeholder but not to others. This
may enable adversarial actions—the voice-to-text provider
may implement decisions or learn features that negatively
affect a downstream developer’s product safety or reliability,
making it easier for them to ensure specific partners are down-
stream, or allowing them to build competitive products of their
own. Still, free markets can encourage interoperability and
prevention strategies against failures. Cell phone providers
adopted shared standards for sending and receiving packets
(information) in part because there was no global monopoly.
Interoperability reduces frictions for all recourse actions, as
stakeholders are heavily incentivized to satisfy their customer
needs and ease customers’ transitions into their ecosystem.
Similarly, reparations discounts or refunds are likely under
open competition. As a result, buy-in for implementing best
practies is high because there are numerous smaller firms
benefiting from the standardization and clear liability.

8 Discussion
There are numerous actors participating in AI production and
use. As technology is adopted, it produces both enhancements
and errors to ongoing production systems—material or service.

In designing functional AI supply chains, we must consider
the factors challenging their resiliency. Our efforts orient to-
wards four fundamental components of business since the
late 19th century: competition, responsibility, liability, and
transparency. This paper contributes not only theoretical in-
sight but also actionable language and conceptual frameworks
that are critical for designing more resilient AI supply chains.
By introducing a clear typology of redress (recourse, repair,
reparation, prevention) and mapping it against hypothetical
market structures, we provide practitioners and policymakers
with tools to diagnose vulnerabilities and opportunities for
productive, responsible practices within AISCs.

Redress is not simply a procedural fix but a basic commu-
nicative challenge, requiring complex, multi-faceted, and often
dynamic transactions. This paper attempts to clarify how dif-
ferent stakeholders have varying capacities for offering or
demanding redress, providing a foundation for targeted gov-
ernance and design efforts. We emphasize agency, dialogue,
and transparency from the perspective of both the impacted
subject and the responsible party, interrogating how discourse
is structured or constrained—what kinds of appeals are in-
telligible, to whom, and under what power asymmetries. As
we show, both those harmed and those causing harm may be
limited by their position within an AISC and by prevailing
market power structures. Such constraints shape the ability
to seek redress, yes, but also the ability to offer remedies to
poor practices.

While the challenges facing AI supply chains seem unprece-
dented, they can nonetheless be effectively simulated by lever-
aging existing experience from rules-based monetary systems
and consumer product supply chains. This prompts the ques-
tion: What do we already know that can inform alternative
approaches? Some observers suggest fostering competition
through subsidies for small businesses, open-source models
and datasets, and subsidized data marketplaces with strict
terms of use. Evidence from supply chain management and
rules-based monetary systems provides a basis for simulating
consequences of conditional variations on prior regulatory
structures. The AI landscape is not monolithic; it comprises
a heterogeneous mix of vertically integrated firms, horizon-
tally organized intermediaries, and independent stakeholders.
Designing resilient infrastructure for AI deployment must re-
flect this diversity. Our stakeholder analysis illustrates a small
fraction of this complexity–and hints at possible modes of
intervention. Lessons from regulated industries, such as the
financial sector, suggest that hybrid models–where responsi-
bility is shared and enforced through centralized licensing or
procurement requirements–may offer a scalable path forward.
However, the consequences of such interventions, including
cease-and-desist orders, injunctions, and punitive damages,
are not evenly distributed across stakeholders. Effective gov-
ernance must balance short-term accountability with long-
term system resilience, working to prevent structural bias
and suppress homogenization while preserving technical ex-
perimentation and equitable access to innovation. As the AI
industry matures, it is crucial to design controls that balance
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transparency, traceability, and accountability while fostering
innovation and competition.

Limitations. Stakeholder theory has a complex relationship
with concerns of distributive justice, and often faces empiri-
cal difficulties when establishing who is a stakeholder. Thus,
stakeholder analysis often under-theorizes topics like resis-
tance, marginality, or contestation, often assuming consensus
is ideal. Although this is often a limitation, through our case
studies we attempt to mitigate this by illustrating how stake-
holder positionality is informed by structural asymmetries
and institutional constraints. Finally, while the paper draws
on organizational, product, and service data from real com-
panies, it does not include formal empirical methods such as
interviews, surveys, or fieldwork. As a result, the stakeholder
roles and redress typology are based on conceptual synthe-
sis from existing published scholarship rather than through
stakeholder accounts or case-based evidence.
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Table 2: How each market dynamic affects the achievability and relational power around every route to redress for
the harm of increased adverse health outcomes incurred by (D). Urgency of the harm is constant in all settings.

Market Recourse Repair Reparation Prevention
Horizontal Achievable : Yes. Stop using

(C).
Urgency : How many adverse
outcomes? How adverse?
Power : Reduced optionality
prevents opting-out of features.
Must end use of (C) and (B).

Achievable : Yes. Even if
mechanism of bias is unrecov-
erable, traceable through A/B
testing.
Power : High bar for acti-
vation from model provider.
Depends on regulation or
collective experiences from
more customers.

Achievable : Yes, through liti-
gation. Liability is provable.
Power : (D) has low rela-
tive power. Difficult to negoti-
ate beneficial terms in licens-
ing agreement, therefore harm
must be egregious.
Achievable : Yes, through dis-
counts or refunds.
Power : (D) has low relative
power (as one of many cus-
tomers) to demand such repa-
rations.

Achievable : Yes. Re-
duce reliance on (C) for
septic diagnostics.
Power : Single-party
decision.

Vertical Achievable : Yes. See above.
Power : Reduced optionality
prevents opting-out of features.
May be unable to stop paying
for (C) or (D).
Achievable : Yes. Switch from
(A) to (A’)
Power : High switching costs
from ecosystem.

Achievable : See above
Power : See above. More
relative power to (D) due to
other competing vertically
integrated firms that collec-
tively set standards and update
norms.

Achievable : Yes, through liti-
gation. Liability is provable.
Power : (D) has less relative
power to demand insight into
integrated system, and may
not have enough information.
However, it is easier to com-
pare to other firm norms to
prove liability.
Achievable : Yes, through dis-
counts or refunds.
Power : Greater competition
gives (D) more relative power
than in horizontal integration.

Achievable : Yes. See
above.
Power : See above.

Free Market Achievable : Yes. Switch from
(C) to (C’)
Power : Single-party decision.
Note: Though this stops the cur-
rent harm, (D) might experience
the same issues if (C’) unknow-
ingly also uses (B).

Achievable : Maybe, if (C) can
be fixed w/out changes to voice
to text. Otherwise, A/B testing
is impossible and mechanism
of bias is unrecoverable.
Power : (D) has high relative
power due to increased com-
petition and lower switching
costs.

Achievable : Maybe, if sup-
ply chain transparency is
sufficiently great or issue is
sufficiently shallow such that
liability can be proven.
Power : (D) has relatively
high power to demand ben-
eficial contracts that enable
litigation.
Achievable : Yes, through
discounts or refunds.
Power : High competition
gives (D) significant relative
power to demand discounts or
refunds due to low switching
costs.

Achievable : See
above.
Power : See above.
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Table 3: How market dynamics affect every route to redress for the harm of fiscal losses incurred by (C). Urgency of
the harm is constant for all responses.

Market Recourse Repair Reparation Prevention
Horizontal Achievable : Yes. Revert back

to previous version of model.
Urgency : Relatively low
where one or few customers’
dissatisfaction is unimpactful.
Power : Single-party decision.

Achievable : Yes. Fix (C) to
workwith (B) throughA/B test-
ing if untraceable.
Power : Single-party decision.

Irrelevant Achievable : Ensure greater
model behavior robustness or
flag upstream changes for pos-
sible downstream impacts.
Power : Requires buy-in from
(A). (C) has reasonable rela-
tional power.

Vertical Achievable : Maybe. Stop
using features from (B) if their
impact is traceable.
Urgency : Relatively low
where one or few customers’
dissatisfaction is unimpactful.
Power : Single-party decision.

Achievable : Yes. Fix (C) to
workwith (B) throughA/B test-
ing if untraceable.
Power : Single-party decision.

Irrelevant Achievable : Ensure greater
model behavior robustness or
flag upstream changes for pos-
sible downstream impacts.
Power : Single-party decision.

Free Market Achievable : Yes. Revert back
to previous version of model.
Urgency : Higher due to in-
creased competition.
Power : Single-party decision.

Achievable : Yes. Fix (C) to
workwith (B) throughA/B test-
ing if untraceable.
Power : Single-party decision.

Irrelevant Achievable : Ensure greater
model behavior robustness or
flag upstream changes for pos-
sible downstream impacts.
Power : Buy-in needed. (C)
has greater relational power.

Table 4: Market Dynamics and Associated Harms

Market Biased Decision
Making Reduced Optionality Homogenization Poor Explanations or

Traceability
Horizontal ✓ ✓ ✓ ✓

Vertical ✓ ✓ ✓

Free Market ✓ ✓

A Additional Characterization of AISC Stakeholders
Here, we provide an extended characterization of roles performed by stakeholders participating within AI supply chains (AISCs).
Our categorization synthesizes existing datasets, prior literature, and domain knowledge, delineating stakeholder roles by their
contributions to AI production. As described previously, we focus on characterizing endogenous actors, or those directly engaged
within the AI supply chain. We do not characterize exogenous actors, or those operating from outside a functioning supply chain
(e.g. legislatures, certain researchers, or auditors). Stakeholder roles described here are analytical categories reflecting functions
rather than exclusive organizational identities. Entities frequently engage in multiple roles simultaneously, contributing to dynamic
interdependencies and complexities within AI supply chains. Below, we provide a detailed characterization of each endogenous
stakeholder type.

A.1 Infrastructure Providers
Infrastructure providers supply fundamental technological tools and resources required for AI development, deployment, and
management.

Hardware Providers. Companies like Intel, ARM, IBM, Qualcomm, and Nvidia manufacture physical computing components
essential for model training and deployment, including CPUs, GPUs, TPUs, and integrated circuits.

Data Centers and Server Farms. These facilities house extensive clusters of interconnected computers and storage units necessary
for large-scale computational tasks. Access is often monopolized by large corporations due to high leasing costs, limiting smaller
entities’ independence and flexibility.
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Infrastructure Providers
Hardware

Cloud Services

Specialized
Services

Data Centers

Cloud Services. Firms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform provide scalable
computational resources, including compute instances, storage, networking, and specialized AI tools. Their integrated services
foster lock-in and dependency among downstream users.

Specialized Services. Emerging services like edge computing, IoT infrastructure, and federated learning cater to niche needs for
privacy, security, and efficiency, intersecting frequently with traditional infrastructure providers.

A.2 Data Providers

Data Providers

Individuals

Data Aggregators &
Data Brokers

Commercial Data 

Public Data 

Data providers offer critical datasets, enabling model training, fine-tuning, and analytics.

Commercial Data Providers. Firms like Experian aggregate proprietary datasets covering consumer behavior, market research, and
finance, monetizing access through structured contracts and data marketplaces. Data marketplaces facilitate transactions between
sellers and buyers, each governed by unique licensing terms. Specialized personal data marketplaces have emerged to empower
individuals economically and mitigate privacy infringements historically associated with mass data collection.

Public Data Providers. Organizations providing publicly accessible datasets (e.g., CommonCrawl, government census data) support
transparency and democratic information access. Data collection mechanisms include sensor-based collection, web scraping, and
first-party platform data collection, with ongoing legal and ethical debates about ownership and usage rights.

A.3 Model Providers

Model Providers
Open Models Closed Models

Model providers develop AI models, varying widely in openness and accessibility. Providers range from non-profit consortiums
(EleutherAI, BigScience) to commercial entities (OpenAI, Meta). Despite the proliferation of providers, financial and market power
remain concentrated among major corporations. Their dominance concentrates market and user attention, affecting supply chain
dynamics through their distribution and access policies.

Open Models. Publicly accessible models with permissive licensing (e.g., EleutherAI’s GPT-J, BigScience’s BLOOM) support broad
developer collaboration, but may lack long-term support.

Proprietary Models. Controlled models hosted by corporations like OpenAI and Meta, typically accessed via restricted APIs or
exclusive partnerships, significantly shape market dynamics through platform lock-in.

A.4 Intermediaries
Intermediaries offer specialized, non-user-facing services within AISCs, increasing supply chain complexity.

Data Services. Include data labeling (e.g., Scale, Amazon Turk), synthetic data generation, and augmentation to enhance dataset
quality or diversity.
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AI Consulting Firms

Model & Data 

Repositories

No Code / Low Code Data Labeling Security / Privacy 

Integration & API 
Management Tools

API Providers / 
Frameworks

Services Services

Data Analytics

Data Augmentation

ML Services

AI Platform Providers

Hosting

model Development

LIBRARIES AND TOOLING

dATA Services

Intermediaries

Model Development and AI Services. Provide low-code/no-code ML services (e.g., DataRobot, Runway), consultancy, and deployment
platforms (e.g., Google AutoML, Amazon SageMaker), facilitating rapid and accessible AI product development.

Model Hosting. Repositories such as Hugging Face and TensorFlow Hub offer centralized access to large-scale models, easing
storage, discovery, and integration with cloud services.

Libraries and Tooling. Essential open-source frameworks and libraries (e.g., PyTorch, TensorFlow, Scikit-learn) offer foundational
tools for AI development. Major firms support these projects for strategic market influence, simultaneously benefiting from
community-driven improvements.

A.5 User/Consumer-Facing Products

User / Consumer-Facing Products
Recommendation 

Systems

Generative AI 
Interfaces

Classifier Interfaces Smart Devices

Autonomous Agents

User-facing AI applications directly impact user experiences, frequently shaping user interactions and decisions. Broadly,
user-facing artifacts may include open-software as well as user-facing products available only through purchase. We do not
distinguish consumer- and user-facing products in this and the following stakeholder category, except when the distinction is
necessary for a particular point. User- and consumer- facing products can be differentiated by their associated interfaces in which
they are embedded or mediated.

Recommendation Systems: Predominantly utilized by social media, search engines, and e-commerce platforms (e.g., Amazon, Shein),
these systems influence consumer behavior by algorithmically curating content, often leading to homogenization and limiting
user autonomy.

Classifier Interfaces: Widely deployed for security, anomaly detection, and identity verification (e.g., Clear, TSA), classifiers mediate
user interactions, frequently through expert oversight, thus indirectly affecting end users.

Smart Devices: IoT devices embedded in daily life (e.g., smartwatches, home systems) automate monitoring and data collection,
facilitating substantial user-data generation. Applications span personal convenience to infrastructure maintenance and urban
planning, with notable privacy implications.

Generative AI Interfaces: Tools built upon LLMs and diffusion models enable user-driven content generation (e.g., virtual try-ons,
image editing). Although powerful, these tools also amplify privacy concerns and potential misuse.

Autonomous Agents: These digital and physical systems (e.g., autonomous vehicles, digital assistants) independently execute
tasks. Their growing complexity and autonomy raise new concerns about accountability, liability, and personhood, highlighting
regulatory and ethical challenges.

A.6 Users & Consumers

Users & Consumers
Non-Experts Expert Users

Users constitute the largest and most diverse stakeholder group, shaping AISCs through varied interactions.
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Non-Expert Users. Frequently unaware of underlying AI operations, non-expert users primarily interact through default settings,
often influenced by design choices (e.g., dark patterns). This limited awareness can inhibit informed decisions and complicate
opting-out processes.

Expert Users. Possessing specialized knowledge, expert users critically influence system adoption and refinement. Their domain
expertise empowers them to navigate, adapt, or reject AI products, influencing providers to meet specialized, informed demands.
Expert feedback frequently drives innovation and customization within niche applications.

B Existing Examples of Vertical Integration
The following cloud service providers offer services catering to various business needs, from basic infrastructure and storage to
advanced AI, machine learning, and big data solutions. This is only a sampling of vertically integrated firms.

B.0.1 Amazon Web Services (AWS).
Compute: Amazon EC2 (Elastic Compute Cloud), AWS Lambda (serverless computing)
Storage: Amazon S3 (Simple Storage Service), Amazon EBS (Elastic Block Store), Amazon Glacier (archival storage)
Databases: Amazon RDS (Relational Database Service), Amazon DynamoDB (NoSQL), Amazon Aurora
Networking: Amazon VPC (Virtual Private Cloud), Amazon Route 53 (DNS service), AWS Direct Connect
AI/ML: Amazon SageMaker, AWS Deep Learning AMIs
Big Data: Amazon EMR (Elastic MapReduce), Amazon Redshift (data warehousing)
IoT: AWS IoT Core, AWS Greengrass
Security: AWS Identity and Access Management (IAM), AWS Key Management Service (KMS)
Developer Tools: AWS CodePipeline, AWS CodeBuild, AWS CodeDeploy

B.0.2 Microsoft Azure.
Compute: Azure Virtual Machines, Azure Functions (serverless), Azure Kubernetes Service (AKS)
Storage: Azure Blob Storage, Azure Disk Storage, Azure Archive Storage
Databases: Azure SQL Database, Azure Cosmos DB (multi-model), Azure Database for PostgreSQL/MySQL
Networking: Azure Virtual Network, Azure DNS, Azure ExpressRoute
AI/ML: Azure Machine Learning, Cognitive Services (e.g., vision, speech, language APIs)
Big Data: Azure Synapse Analytics, Azure HDInsight
IoT: Azure IoT Hub, Azure Sphere
Security: Azure Active Directory, Azure Security Center
Developer Tools: Azure DevOps, Azure DevTest Labs

B.0.3 Google Cloud Platform (GCP).
Compute: Google Compute Engine, Google Cloud Functions, Google Kubernetes Engine (GKE)
Storage: Google Cloud Storage, Persistent Disks, Google Cloud Filestore
Databases: Google Cloud SQL, Google Cloud Spanner, Google Bigtable (NoSQL)
Networking: Google Virtual Private Cloud (VPC), Cloud DNS, Cloud Interconnect
AI/ML: AI Platform, TensorFlow, AutoML
Big Data: BigQuery, Dataflow, Dataproc
IoT: Cloud IoT Core
Security: Identity and Access Management (IAM), Cloud Key Management Service (KMS)
Developer Tools: Google Cloud Build, Cloud Source Repositories, Cloud Deployment Manager

B.0.4 IBM Cloud.
Compute: IBM Cloud Virtual Servers, Bare Metal Servers, IBM Cloud Functions (serverless)
Storage: IBM Cloud Object Storage, IBM Cloud Block Storage, IBM Cloud File Storage
Databases: IBM Db2, Cloudant (NoSQL), IBM Cloud Databases for PostgreSQL/MySQL
Networking: IBM Cloud Virtual Private Cloud, IBM Cloud Internet Services
AI/ML: IBM Watson, Watson Studio, Watson Machine Learning
Big Data: IBM Cloud SQL Query, IBM Cloud Analytics Engine
IoT: IBM Watson IoT Platform
Security: IBM Cloud Identity and Access Management, IBM Cloud Security Advisor
Developer Tools: IBM Cloud Continuous Delivery, Tekton Pipelines, IBM Cloud DevOps Insights

B.0.5 Oracle Cloud.
Compute: Oracle Cloud Infrastructure (OCI) Compute, Oracle Functions (serverless)
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Storage: Oracle Cloud Infrastructure Object Storage, Block Storage, Archive Storage
Databases: Oracle Autonomous Database, Oracle Database Cloud Service, MySQL Cloud Service
Networking: Oracle Virtual Cloud Network (VCN), Oracle Cloud Infrastructure FastConnect
AI/ML: Oracle AI, Oracle Machine Learning
Big Data: Oracle Big Data Service, Oracle Data Flow
IoT: Oracle IoT Cloud Service
Security: Oracle Identity and Access Management, Oracle Cloud Guard
Developer Tools: Oracle Developer Cloud Service, Oracle Visual Builder

B.0.6 Alibaba Cloud.
Compute: Elastic Compute Service (ECS), Serverless Kubernetes, Function Compute
Storage: Object Storage Service (OSS), Elastic Block Storage, Archive Storage
Databases: ApsaraDB for RDS (MySQL/PostgreSQL/SQL Server), ApsaraDB for MongoDB, PolarDB
Networking: Virtual Private Cloud (VPC), Alibaba Cloud DNS, Express Connect
AI/ML:Machine Learning Platform for AI (PAI), Alibaba Cloud TensorFlow
Big Data:MaxCompute, DataWorks, AnalyticDB
IoT: Alibaba Cloud IoT Platform, Link Develop
Security: Anti-DDoS, Cloud Firewall, Identity and Access Management (IAM)
Developer Tools: Alibaba Cloud DevOps, CloudShell, Container Service for Kubernetes (ACK)
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