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Figure 1: Examples of VisuaLint for (left-to-right) an inexpressive size encoding, a missing legend, and dual-axes with differing scale rates.

Abstract
Chart construction errors, such as truncated axes or inexpressive visual encodings, can hinder reading a visualization, or
worse, imply misleading facts about the underlying data. These errors can be caught by critical readings of visualizations,
but readers must have a high level of data and design literacy and must be paying close attention. To address this issue, we
introduce VisuaLint: a technique for surfacing chart construction errors in situ. Inspired by the ubiquitous red wavy underline
that indicates spelling mistakes, visualization elements that contain errors (e.g., axes and legends) are sketchily rendered and
accompanied by a concise annotation. VisuaLint is unobtrusive — it does not interfere with reading a visualization — and its di-
rect display establishes a close mapping between erroneous elements and the expression of error. We demonstrate five examples
of VisualLint and present the results of a crowdsourced evaluation (N = 62) of its efficacy. These results contribute an empiri-
cal baseline proficiency for recognizing chart construction errors, and indicate near-universal difficulty in error identification.
We find that people more reliably identify chart construction errors after being shown examples of VisuaLint, and prefer more
verbose explanations for unfamiliar or less obvious flaws.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

Chart construction errors — mistakes in visual encodings that are
agnostic to underlying data semantics such as truncated axes, mis-
aligned baselines, or inexpressive channels — are commonplace.
Every week, dozens of real-world examples of such errors are
posted to the r/DataIsUgly Reddit subcommunity, spanning a va-
riety of domains including quarterly financial reports, renowned
newspapers, and scientific publications. It can be tempting to dis-
miss these issues as “amateur mistakes”, but expert data visu-
alization designers are prone to making them as well — for in-
stance, a recent blog post by the visual data journalism team at The

Economist documented seven examples of such mistakes in their
work [Leo19]. At best, these errors result in visualizations that are
confusing or difficult to read and interpret. At worst, such mistakes
can yield charts that mislead readers and shape discourse about
the underlying data in problematic ways. As an example, during
a high-profile September 2015 United States congressional hear-
ing, a chart was shown that purported to depict Planned Parenthood
dramatically increasing the number of abortions it offered as com-
pared to cancer screenings and preventative services (Fig. 2(left)).
This visualization was an instance of a dual-axis chart using drasti-
cally different scales; when journalists replotted the data against a
common baseline, the trend was muted (Fig. 2(right)).
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Figure 2: Planned Parenthood Abortion Rates: Before and After
Dual Axes Error is Corrected.

Identifying chart construction errors is not always straightfor-
ward. Dozens, if not hundreds, of rules are necessary to express
best practices in visualization design [MK18,MWN∗19,Mee17] —
an infeasible level of knowledge to expect of casual authors and
readers, exacerbated by the ever-evolving nature of visualization
best practices [Kos16]. Even for experts that possess a high level of
data and design literacy, catching these mistakes is non-trivial and
requires critically reading charts with careful attention — an activ-
ity made all the more challenging due to the sense of authority and
certainty visualizations convey [KHAA16,Kos08]. As a result, sur-
facing these mistakes occurs in an unstructured and ad hoc fashion,
and often relies on experts such as data journalists or data activists
who largely focus on a narrow set of high profile domains.

There is a growing research interest in addressing these issues,
but existing work has primarily done so via systems-building. For
instance, novel systems that automatically detect errors in a visu-
alization [MK18], codify best practices and recommend alternative
designs [MWN∗19], or learn design principles from corpora of ex-
amples [SML∗18] have been proposed or developed. While valu-
able, this focus approaches the problem space from the perspective
of visualization authors and does not grapple with how visualiza-
tion readers reason about chart construction errors that they might
experience in the wild. As a result, user experience and usability
concerns associated with error detection (e.g., how might we indi-
cate visualization errors to lay readers, and how well do lay readers
understand the error that has occurred) have yet to be explored.

As a way of focusing on not just what errors are present, but also
how to surface them, we present VisuaLint: a novel technique for
expressing chart construction errors to a lay audience. VisuaLint
provides a general design language that can be adapted and ex-
tended for an ever-evolving set of visualization best practices. Erro-
neous visualization elements (e.g., axes and legends) are sketchily
rendered — an approach inspired by Wood et al. [WII∗12] wherein
visual elements are presented in a “hand-drawn” manner — and can
be accompanied by annotations for additional context. For instance,
missing legends are highlighted by appending a sketchy, pseudo-
legend to the chart; if dual-axes charts used misaligned scales, the
axes are replaced with vertical, red wavy lines; and, if bar charts
do not begin at a zero baseline, a sketchy arrow and 0-label anno-
tation is overlaid on the y-axis. VisuaLint is designed to be salient
yet unobtrusive — errors are highlighted, facilitating identification,
but the expression does not interfere with chart reading. Its direct,
in situ presentation facilitates a closeness of mapping [BBC∗01]

more analogous to spell check annotations than code linting tools,
which typically list errors in a secondary view. By depicting errors
as sketchy rather than crisp elements, VisuaLint helps undermine
the assumed authority of visualizations [KHAA16].

We evaluate VisuaLint in two ways. We demonstrate its ex-
pressive extent through several example visualizations that cover a
range of mistakes including ineffective color choices, inexpressive
size encodings, issues with scale and axis baselines and alignment,
and missing elements such as legends. To assess its efficacy at sur-
facing errors, and to solicit users’ preferences, we conducted a two
phase crowdsourced study: participants were asked to identify chart
construction errors before and after being exposed to VisuaLint,
and then to rank different expressions of these errors. Through this
study, we contribute a empirical baseline for proficiency in recog-
nizing chart construction errors. We show that, without interven-
tion, readers have great difficulty recognizing these errors. Our re-
sults also show that people more reliably identify such errors af-
ter being exposed to VisuaLint, and suggest that people appreciate
greater levels of guidance especially in cases where the chart con-
struction errors are complex or esoteric.

Experimental materials, including stimuli and data tables, are
hosted on OSF: https://osf.io/jwbn2/.

2. Related Work

Improperly designed visualizations can have dramatic impacts on
how data are (or are not) interpreted. Moreover, certain sets of vi-
sualizations have been labelled as “deceptive,” with measurable bi-
ases in how people interpret data [PRS∗15].

Despite this potential for harm or misuse, guidance on avoid-
ing visualization “pitfalls” [BE15] is often absent in visualization
tools. When best practices or design issues are codified, they are
often presented to the user implicitly: for instance, through “smart
defaults” in languages like Vega-Lite [SMWH16], or as constraints
in recommendation systems like Draco [MWN∗19]. While help-
ful, these implicit approaches can fail when users deviate from ex-
pected use cases. More importantly, they provide little pedagogical
value as the choice of default values are rarely explained. There is
a dearth of work on in situ feedback for visualization design, and
on validating and verifying visualizations [KS08].

Given the severity and costliness of errors in data analysis, there
is an emerging scholarship on using automated or semi-automated
methods to detect potential flaws in analyses. For instance, Barowy
et al. [BGB14, BBZ18] investigate systems for automatically de-
tecting errors in spreadsheets. More specialized tests have been pro-
posed for analysis concerns such as Simpson’s paradox [GBK17],
the “drill down fallacy” [LDH∗19], and the multiple comparisons
problem [BDSK∗17] (specifically as it emerges in visual analytics
contexts [ZZZK18]). Similar to our work, McNutt et al. [MKC20]
investigate a general class of visualization “mirages,” and suggest
testing regimes to disclose these chart errors to readers.

A related concern above and beyond analytical correctness is
how to build skepticism and encourage critique of visualizations.
The clean design and inherent rhetorical force of visualizations lend
them implicit authority [KHAA16,Kos08]. Colloquial attitudes to-
wards visualizations can include a disregard of the provenance of
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data or potential biases of designers in the belief that charts are ob-
jective representations of truth [PAEE19]. Compounding issues of
cultural norm and limited data literacy discourage critical, inten-
tional chart reading and perpetuate poor visualization practices.

To address both of these concerns, we borrow the metaphor of
a “linter,” a concept from static code analysis in which the source
code of a program is checked for errors in syntax, style, or even
simply constructs that are often misused [Lou06]. A linter presents
the user with a list of violations of linting rules, which the user
can either fix or ignore. Hynes et al. [HST17] propose a data lin-
ter for “sanity checking” datasets for ML purposes. Closer to our
work, McNutt and Kindlmann [MK18], drawing on existing visual-
ization best practices, propose a linter for visualizations. This prior
work, however, has primarily focused on linting systems — using
automated or semi-automated ways of detecting visualization er-
rors — and there has been little commensurate work studying how
to present the results of a visualization linter in a usable fashion to
readers. In response, our work primarily focuses on this latter is-
sue. We draw on a key affordance of visualizations: they afford the
presentation of in situ information about violations of linting rules.
Thus, we generate visual lints that overlay the chart, and direct the
viewer to specific sections in which a rule violation was detected,
using the same visual language as the chart itself. Our approach is
inspired by prior work by Hoffswell et al. [HSH18] who show that
users are able to more quickly and accurately debug code when
editors are annotated with in situ visualizations of program state.

3. The Design of VisuaLint

We designed four lint motifs through an iterative process in-
formed by prior work on perceptual studies, visualization best prac-
tices [Tuf01] and linting [Mee17, MK18]. We evaluated each mo-
tif through informal, unstructured interviews with users spanning a
range of data expertise.

3.1. Design Process

Although the research community has increasingly been devoting
attention to the issue of visualization errors, a canonical list of such
errors does not yet exist. As a result, we began our design pro-
cess by compiling a list of data visualization best practices and as-
sociated errors, starting with a review of the literature on percep-
tual studies, visualization systems [MWN∗19, SMWH16, MK18],
and widely-read, non-academic material such as Tufte’s The Vi-
sual Display of Quantitative Information [Tuf01]. To ensure our
list of errors also reflected real-world practice, we additionally col-
lated discussions of visualization best practices found in online fo-
rums (e.g., VisGuides [DAREA∗18], and Reddit’s r/DataIsUgly)
as well as examples drawn from current affairs and the media (e.g.,
congressional hearings as in Fig. 2 or blog posts from journal-
ists [Leo19]).

Through subsequent discussions, we crafted several methods of
categorizing errors. We hoped that, through this process, we would
uncover commonalities between errors that would in turn inspire
VisuaLint’s design. On reflection, we noticed a shared feature in
our categorizations—the separation between data-centric errors,

those grounded in data semantics, and construction errors. This dis-
tinction guided our evaluation design, as construction errors are vi-
sually recognizable to a reader regardless of prior knowledge of the
underlying data. By focusing on chart construction errors, we could
examine lay comprehension of visualizations.

We conducted informal, unstructured interviews with eight in-
dividuals (three men and five women) with varying levels of data
literacy and familiarity with visualizations. Four participants were
PhD students in data-related fields, three had taken or were in
an undergraduate statistics course, and one had completed a high
school degree but had no exposure to data-related topics. Ages
ranged from 21-30 years. Interviews lasted 35–45 five minutes, and
covered each design motif and their various iterations.

We presented participants with a variety of errors for each motif,
and posed open-ended questions such as “what do you think is be-
ing indicated on the chart?”, “why do you think that?”, and “how
might this design be improved?”. After all motifs were presented,
a final question solicited overall preferences: “of these different de-
signs, which makes the most sense, and why?”. We documented
these responses, which helped us synthesis our design goals (§ 3.2)
as well as potential refinements to the motifs.

3.2. Design Goals

Through our successive rounds of formative evaluations, we syn-
thesized the following design goals for VisuaLint:

G1 Salient but Unobtrusive. This goal balances the need of
noticeably surfacing errors with maintaining the legibility
of the underlying visualization. Instances of VisuaLint must
be immediately apparent to readers, but must not interfere
with reading the visualization. For example, readers should
not confuse VisuaLint elements as being a part of the orig-
inal chart. This goal seeks to both reduce the amount of at-
tention a reader must pay to identify errors, but also the cog-
nitive burden associated with interpreting and distinguish-
ing VisuaLint from the visualized data.

G2 Direct. Rather than listing errors in a secondary view, akin
to many code linting tools, user feedback favored an ap-
proach more analogous to spell check’s red wavy line. Vi-
suaLint is displayed in situ, either overlaying or replacing
erroneous elements. By aligning chart elements with er-
ror expression, VisuaLint establishes a closeness of map-
ping [BBC∗01] that facilitates error awareness.

G3 Composable. Unlike spell check, where there is only one
reason a word may be underlined (it is spelled incorrectly!),
there may be a multitude of errors on a single visualization.
Thus, VisuaLint must offer a composable visual vocabulary
for displaying errors.

G4 Uncertain. Rather than using precise displays, VisuaLint
should reflect the fact that best practice in data visu-
alization continues to evolve [Kos16]. Less precise de-
sign elements also help subvert a visualization’s rhetorical
force [KHAA16, Kos08]: an apparently objective chart is
above flaw, but, by reducing a chart’s sense of authority, we
can create space for readers to consider its limitations, fa-
cilitating critique.
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Figure 3: Design alternatives we considered including (left to right) varieties of shading elements, iconography, and textual annotations.

3.3. Initial Design Motifs

To ensure a broad exploration of the potential design space of visual
linting techniques, we began our process with three distinct design
motifs (Fig. 3) and evaluated them through informal formative in-
terviews. Each motif went through several iterations, examples of
which are included in supplemental materials.

Shading (Fig. 3(left)). We explored a variety of shading strate-
gies including translucent overlays and crosshatching. This strat-
egy seemed promising initially because it saliently conveyed “er-
ror” (G1) and, in the case of crosshatching, also evoked a sense of
uncertainty (G4). However, our formative interviewees uniformly
found that shading distracted from reading the visualization (G1).
Moreover, we found the technique to have limited expressivity —
how would we point out similar colors using shading, for example?

Iconography (Fig. 3(center)). Inspired by the “hamburger” and
3-dots “more” buttons, we considered a variety of icons to represent
errors such as using incorrect scale types, perceptually ineffective
color choices, and truncated axes. While these icons were unob-
trusive, evaluators did not find them to be sufficiently salient (G1)
with several participants failing to see the icons altogether. More
problematically, many participants had trouble interpreting what
the icons meant, a problem exacerbated by the fact that, to many
participants, the icons appeared to just “float.” Taken together, these
results suggested the icons developed a poor mapping between the
source and expression of error (G2).

Text Annotations (Fig. 3(right)). We examined several styles
of textual annotation, varying the font size, placement, and ver-
bosity of the explanation. With an appropriate styling, we found
that text could be made salient (G1), and its description facilitated
a close mapping particularly when placed alongside the erroneous
element (G2). However, we found it difficult to concisely explain
errors in situ without relying on visualization jargon (e.g. “scales”,
“domain”, “encoding”, etc.) and felt that text poorly communicated
a sense of uncertainty about chart construction (G4).

3.4. Final Design Motif & Implementation

Our final approach is inspired by Wood et al.’s sketchy rendering
technique [WII∗12], a framework for presenting charts in a hand
drawn style. Wood’s technique is a good candidate for VisuaLint
because, as they showed, sketchy visualizations increased engage-
ment of readers and were more approachable than their traditional,
austere counterparts (G4). They further emphasized the attention-
grabbing character of sketchy graphs, stating that “the ‘disfluence’
created by sketchy rendering may, in some contexts aid understand-
ing by focusing attention of the reader” (G1).

However, there are some key differences in our approach. First,
for a more direct mapping to the source of the error (G2), we only
render erroneous elements in a sketchy format rather than the en-
tire visualization. Second, to ensure that the sketchiness does not
impair reading the visualization (G1), sketchiness is never applied
to label and title elements. Finally, to facilitate composition (G3)
and to provide additional context, sketchy renderings of chart ele-
ments may occasionally be accompanied by sketchy label annota-
tions (e.g., a 0 at the bottom of a sketchy y-axis to indicate the lack
of a zero baseline).

We implement VisuaLint via a set of heuristics for five types of
errors, shown in Figure 4. These errors include not using size en-
codings when negative data is involved (Fig. 4(a)); dual axis charts
with differing scales (Fig. 4(b)); using perceptually ineffective col-
ors (Fig. 4(c)); missing legends (Fig. 4(d)); and, truncated axes
(Fig. 4(e)). Rather than an exhaustive demonstration, we strategi-
cally chose these errors to evaluate the efficacy of sketchy in situ
annotations. In particular, to facilitate a crowdsourced study, we
focus on chart construction errors or errors that do not require
knowledge of the underlying data semantics. To demonstrate how
the design language of VisuaLint can be adapted and extended, we
selected errors associated with a diverse range of visual encoding
choices. Moreover, these errors span a gamut of complexity to help
us determine how much data literacy or visualization familiarity
lay users need to understand what is being depicted, and whether
VisuaLint is still helpful when errors are “obvious.”
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Figure 4: We implemented VisuaLint for six types of chart construction errors: (a) inexpressive size encodings; (b) dual axis charts with
differing scales; (c) perceptually ineffective color encodings; (d) missing legends; and, (e) truncated axes.

Our heuristics operate as a layer on top of Vega-Lite visualiza-
tions [SMWH16]. We inspect parsed Vega-Lite and the rendered
SVG output to identify how specific errors might manifest in Vega-
Lite visualizations. For example, to identify ineffective color en-
codings (Fig. 4(c)), we compute a CIELAB perceptible difference
value ∆Ep,s between color encodings on a graph; color pairs that
fall below the just noticeable difference (jnd, ∆Ep,s ≈ 2.0) may not
be distinguishable to all viewers, and thus are flagged. For dual
axes charts (Fig. 4(b)), our heuristics identify the y-axis elements,
extract the tick labels, and calculate the rate of change. Similarly,
truncated axes (Fig. 4(e)), missing legends (Fig. 4(d)), and negative
size encodings (Fig. 4(a)) are caught via parsed Vega Lite—when
a negative value is present in a field associated with size—or ren-
dered SVG—as is the case for missing legends and truncated axes.
These heuristics are not designed to be general-purpose or tool ag-
nostic but rather were crafted to help us evaluate the VisuaLint tech-
nique specifically. Once erroneous elements are identified, they are
removed from the SVG tree and replaced with their sketchy coun-
terparts generated through Rough.js [Shi19].

4. Evaluation

We performed a two-part, crowdsourced evaluation of VisuaLint
consisting of (1) a between-subjects study measuring VisuaLint’s
expressiveness, comprehensiveness, and informativeness, and (2)
a survey to gather qualitative feedback on VisuaLint. Using Pro-
lific.co, we were able to quickly engage a diverse population with
varied levels of data literacy. The study took an average of 35.2
minutes. Participants were recruited through the Prolific.co plat-
form and were compensated at an average rate of $10.06/hour.

Supplementing our initial informal interviews, our intent with this
study was to measure whether our designs resulted in people’s in-
creased awareness of chart errors, and to simultaneously develop a
baseline for lay error recognition.

All experimental materials, including stimuli and data tables, are
hosted on OSF: https://osf.io/jwbn2/.

4.1. Between-Subjects Study Design

We used a between-subjects design, where each participant saw
only one type of lint design:

• Text: the participant received a textual description of the error,
underneath the chart.
• Visual: the participant received only our in situ VisuaLint indi-

cation of the error.
• Visual + Text: the participant received both the text and in situ

error indication.

There were four phases of the experiment. A prior identifica-
tion phase where participants saw a series of charts (each of which
may or may not have a chart construction error) with no lints what-
soever and were asked to identify potential errors, an exposure
to charts with lints exposed using the relevant lint design, a post
identification phase, where participants repeated the prior task with
a different series of (non-linted) charts, and then a final ranking
task where participants were shown all designs on a set of sample
charts and asked to rank them in order of preference while provid-
ing justifications and feedback regarding their ranking. The expo-
sure phase additionally acted as an attention check for participants–
participants were asked to click on the location of the error mes-
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sage. Those that consistently did not complete this selection were
not included in the final results analysis.

The charts used in the evaluation are available in our supplemen-
tal material, and were intended to represent a wide variety of com-
mon chart types with different designs and data domains. Several
charts (such as Fig. 4(b) and 4(d)) replicated real-world examples
that exhibited one of our selected errors, while others were specifi-
cally crafted to present one of the errors listed. Each chart consisted
of one chart construction error.

4.2. Prior and Post Identification Task

Participants were exposed to one of five kinds of chart construction
errors in the prior and post identification tasks (text in italics is
the exact wording we used to surface these errors in our Text and
Visual+Text conditions):

• Color: color was used to encode nominal data, but two cate-
gories were assigned identical or very similar colors. The colors
are too similar.
• Legend: color was used to encode nominal data, but there was

no legend communicating which category received which color.
There is no legend.
• Rate: a dual axis encoding was used, but the rate of change

in the two axes were dramatically different or otherwise non-
comparable. The axes change at different rates.
• Size: size was used to encode quantitative data, but some data

values were negative. There are negative values associated with
the size encodings.
• Axis: the y-axis was truncated such that it did not start at zero.

the y-axis does not start at zero.

Participants initially saw three examples each of these errors,
as well as three examples of charts with none of the errors listed
above, for a total of 3×6 = 18 charts in the prior task. A different
set of 18 charts with the same error allocation were shown in the
post task. For each chart, participants were given a binary forced-
choice: What do you think of the construction of this graph? (1) It’s
well-constructed, (2) There are errors in construction. If the partic-
ipant indicated the presence of errors, we then solicited a free-text
response where they would describe the error.

Our primary quantitative measure for the prior and post tasks
was correctness in identifying the chart error present. We assessed
this through dual coding: two paper authors independently assigned
a 0 (indicating that the participant’s response did not identify the er-
ror to our satisfaction) , 1 (indicating that the participant’s response
did point to the chart error), or a P (indicating that the participant’s
response only partially pointed to the error, or that it was ambigu-
ous whether or not the participant was correct). The coders then
met to reconcile errors and generate a consensus code. There was
high inter-rater reliability prior to this consensus process (Cohen’s
κ = 0.88, with only 5% of codes being mismatches). Responses
with a consensus code of P were excluded from our later analyses
of correctness due to their ambiguity.

4.3. Ranking Task

In addition to the four errors listed above, we presented two addi-
tional types of errors in the ranking task, which we excluded from

our main condition as they are not detectable in the chart per se
without an explicit lint, and so identification would not be mean-
ingful in improving identification of errors:

• Log Neg: a logarithmic scale was used to place values, but there
were negative values in the data (that are subsequently not plot-
ted in the graph). There are negative values in the data, but a
logarithmic scale is being used.
• Range: there are data values in the graph that exceed the domain

of either the x- or y-axis of the graph and are subsequently not
plotted in the graph. Not all data is included in the axis range.

By included these additional, data-focused errors, we hoped to
surface a richer description of user preferences and needs outside
of construction errors. Participants saw one set of charts for each
of these seven error types, and were asked to rank four versions of
each chart (one with no expressed lint, and then three with each
of our proposed text, visual, or text+visual lint designs). Each set’s
chart presentation was varied across participants to avoid a bias-
ing effect in ranking. We performed light, informal open-coding on
ranking explanation to uncover the most relevant themes, and then
grouped these themes based on commonalities.

4.4. Hypotheses

We believed that, as participants in our pool were unlikely to be fa-
miliar with all of the chart errors presented and that both visual and
textual lints (or their conjunction) would educate our participants,
correctness in identifying chart errors would increase after ex-
posure to chart lints, regardless of lint design.

We also believed that combining both textual and visual lints
would be beneficial. VisuaLint indicates the presence and location
of errors, while text lints directly state what the error is. Therefore,
we hypothesized that the increase in correctness in identifying
chart errors would be highest in the visual+text condition.

Once primed, we believed that certain flaws would be almost im-
possible to miss. Indistinguishable colors, for example, are imme-
diate points of confusion. Similarly, the absence of a legend ensures
ambiguity for some facet of the graph. In contrast, using a size en-
coding with negative data creates confusion but does not stand out
in the way a “missing” color or legend might. Participants may also
not be as familiar with size encodings or dual axes compared to
more common charts, and thus might be less cognizant of errors
in their construction. As such, we hypothesized that the correct-
ness in identifying chart errors would not be uniform across all
error types.

We did not have strong hypotheses about our ranking data, be-
yond the rankings generally supporting our hypotheses above. That
is, participants would generally rank our linting interventions
as preferable to an absence of lints (in support of our first hy-
pothesis) and participants would not have uniform preferences
in linting designs across errors (in support of our third hypothesis,
and under the assumption that “obvious” chart errors may require
less ostentatious or redundant linting designs).
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Figure 5: Participants’ prior and post accuracy (with 95% boot-
strapped confidence intervals) across the three lint conditions.

4.5. Participants

We collected data from 62 participants using Prolific. Respondents
reported their gender as follows: 42% percent as female, 56% per-
cent as male, and 2% as other or non-binary. Participants self-
reported age ranges between 18-74, with 48% (n=29) of partici-
pants in the 18-24 age range, 29% as 25-34, 13% as 35-44, 5%
as 45-54, 3% as 55-64, and 2% as 65-74. The most commonly re-
ported highest completed level of education was a Bachelor’s de-
gree (37%, n=23), followed by some college credit (23%), high
school graduate (21%), Master’s degree (10%), Associate’s Degree
(4%) and trade/technical/vocational training (3%), while some high
school, no diploma had the lowest response (2%, n=1).

Participants reported being "very uncomfortable" (5%, n=3),
"somewhat uncomfortable" (18%, n=11), "neither uncomfortable
nor comfortable" (15%, n=9), "somewhat comfortable" (47%,
n=29), and "very comfortable" (16%, n=10) interpreting charts and
working with data. Current occupations were very diverse, ranging
from Exercise Riders (apparently a person that rides horses to keep
them fit), Home Makers, Dental Technicians Analysts, Designers,
Managers, to PhD students and more.

5. Results

After coding responses, we computed accuracies across each condi-
tion. We found improvement across all three intervention methods
as seen in Figure 5. Overall, prior to intervention, participants cor-
rectly identified 11.15% of errors (95% CI: 0.09-0.13). Participants
in the text group initially performed slightly better than their coun-
terparts (13.16 % correct, 95% CI: 0.10-0.17), while VisuaLint +
text identified a lower 8.61% % (95% CI: 0.06-0.12 ).

Between pre- and post-intervention conditions, there was a pos-
itive shift: as shown in Figure 5, we observed a marked increase in
participants’ percentage of recognized errors for each intervention.
Both VisuaLint + text and text intervention participants doubled
their accuracy, while just VisuaLint improved by a factor of roughly
1.5. This supports our first hypothesis, which proposed that any of
our error surfacing methods would positively impact recognition.

Figure 6: Participants’ prior and post accuracy (with 95% boot-
strapped confidence intervals) across each error condition.

Further, both text and VisuaLint + text conditions saw a more than
doubling of errors caught.

Prior to intervention, those self-reporting as "very comfortable"
interpreting graphs performed approximately the same as those that
felt very uncomfortable (10.0% and 9.25 % respectively). This was
not expected, but may indicate either inattention—a lack of close
reading—over-confidence, or a shared, across-participant lack of
awareness for key best practices in visualization. We suspect the
last to be the case, as all groups clearly improved post-condition.
Interestingly, accuracy rates for these "very comfortable" indi-
viduals post-intervention were higher than "very uncomfortable"
groups. While these numbers are still numerically close (23.33 and
18.51 %), it does suggest that those familiar with visualizations
and data work may require less scaffolding to inform critical per-
ceptions of charts.

5.1. Correctness Across Designs

Our choice to not prime users with explanations of the visual sig-
nifiers of our lints was intentional; we intended to unearth unfacil-
itated expressiveness. From this perspective, VisuaLint did well–
people understood the designs enough to internalize construction
errors and improve their recognition. Our unobtrusive but salient
visuals aligned with our goals, yet by prioritizing this balance we
removed some quality of descriptiveness. It is therefore under-
standable that the VisuaLint condition did not improve participants’
recognition as well as the text or VisuaLint + text conditions. How-
ever, contrary to our second hypothesis we did not observe a con-
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Figure 7: Rankings of participants’ preferred linting style across error types (1 is highest, 4 is lowest).

sistent benefit for visual lints over text lints, for either VisuaLint
per se, or VisuaLint supplemented with a textual lint.

When examining free-form error identification responses, we no-
ticed a surprising and frequent pattern: groups that were exposed
to the text only condition often perfectly copied its wording when
identifying construction errors. While text is informative, it does
not indicate the location of the error–less experienced participants
might read but not comprehend or be able to re-apply information.
This replication of structure may point to a lack of understanding
of the holistic meaning of an error.

As the VisuaLint condition included no text, there was noth-
ing to copy: participants must closely inspect a chart to recog-
nize why the signifier appeared, thus discovering patterns of sim-
ilarities for themselves through the different intervention exam-
ples. Some of these recognized patterns were incomplete–or incom-
pletely described–such as in the case of these negative size encod-
ing descriptions: "There are minus legends", or "There are negative
numbers". Others showed full understanding of the indicated er-
ror, pointing out "the circle sizes are counter-intuitive to the data
they are representing", and that there were "circle sizes represent-
ing negative values". This was further emphasized in the ranking
task. As one person put it, "reading the text made it instantly clear
what the problem was, where as the visual alone made me have [to]
think further!"

5.2. Correctness Across Errors

Supporting our third hypothesis of non-uniformity in accuracy,
there was a relationship between the amount of improvement and
the type of error; while all error conditions showed improvement,
participants responded to Color and Legend particularly well, ex-
hibiting thatease of error recognition is not consistent across

all error types, seen in Figure 6. During the prior phase, partic-
ipants performed quite poorly across all errors: participants suc-
cessfully recognized 24.7% of color errors (95% confidence in-
terval: 0.19-0.32), 33.33% of legend errors (95% confidence in-
terval: 0.28-0.38), 0% of size encoding errors, 8.1% of truncated
axis errors (95% confidence interval: 0.04-0.12), 1.1% of rate er-
rors (95% confidence interval: 0.00-0.03), and correctly labeled
100% of "well-constructed" graphs–those absent of errors–as such.
Post-intervention, participants showed improvement in recognition
across all errors, correctly identifying 46.0% of color errors (95%
confidence interval: 0.39-0.52), 57.5% of legend errors (95% con-
fidence interval: 0.48-0.64), 12.9% of size encoding errors (95%
confidence interval: 0.08-0.17), 17.8% of truncated axis labels
(95% confidence interval: 0.10-0.25), 15.1% of rate errors (95%
confidence interval: 0.09-0.22), and incorrectly labeled 3.2 % of
"well-constructed" graphs, correctly labeling 96.8% (95% confi-
dence interval: 0.92-1.0). The obvious nature of color and legend
errors—those that we posited to be more visually salient—was re-
flected in both prior and post phases. Both error classes had the
highest rates of recognition in both conditions: overall accuracy for
color increased from 24.73 % to 45.16 % post intervention, while
post-intervention recognition of legend errors improved to 57.53%.

Despite color and legend errors being apparently obvious, the
low rates of recognition found in our study even with intervention
indicated a surprising disparity of data or design literacy in our user
group, a disparity further exacerbated by the majority of respon-
dents (75%) having stated their highest education level achieved as
at least some education beyond high school.

5.3. Ranked Preferences

Figure 7 shows these results in detail: in every case, a lint of any
sort was overwhelmingly preferred over a “lint-less” chart. Across
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our seven error conditions, the visual+text lint was the modal first-
ranked choice for four; for color, range, and dual axis rate errors,
the text-only lint was preferred.

In the responses ranking, we found that there was a difference
in how people perceived the usefulness of an error expression. For
errors that related to information users were likely familiar with–
the absence of a legend and similarity of color–participants consis-
tently rated visual highest. One participant stated “since the legend
is missing, the visual is clear as to what the problem is, and stand
out more than the text”

But for more complex errors, as one respondent pointed out,
“text is useful due the complexity of the error.” This does not mean
that text alone was sufficient. In general, users preferred VisuaLint
with text: “The text gives context for the visual, the visual by it-
self doesn’t give a reason for why it’s there. On the other hand, the
text by itself is easy to miss.” Reinforcing this, in the context of a
truncated axis, “Text and visual give a complete showing of where
the error is. The placement of the error and the name of the error.
Visual on its own is fine, text on its own gives less information.”

6. Discussion and Future Work

General low rates of error detection would seem to point to a broad
lack of data and visualization literacy. With the exception of post-
intervention legend mistakes, participants consistently scored be-
low 50% accuracy. Even participants who self-described as “very
comfortable” did not catch errors at a frequency we would ex-
pect. And while different methods of error expression may aug-
ment this awareness–both in the short-term, as seen from the rank-
ing responses, and in the longer-term internalization of heuristics,
as shown in the post-condition identification task–it cannot replace
the deeper engagement that comes from courses, books, and other
more verbose materials.

In order for signifiers to be effective, users must understand what
they reference. For populations less familiar with chart best prac-
tices, there may be great benefit in an educational scaffolding ap-
proach [She05]. This scaffolding follows a format in which users
are initially given a myriad explanations, a number which, follow-
ing their development of expertise, is rapidly reduced. This sug-
gests that users need verbose explanations for new material–as text
and VisuaLint + text interventions provide–and reemphasizes an
earlier point: that people lack an intuition for visualizations. As
users further develop their expertise, this demand dissipates (as
seen in both color and legend errors). By scaffolding VisuaLint’s
descriptiveness, we might allow users autonomy of choice. One
method, borrowing again from spell check, may include an inter-
action with VisuaLint that furnishes users with verbose explana-
tions and provides automated chart corrections. This references the
functionality of later spell check tools, which not only caught and
surfaced errors, but provided recommendations and even automated
adjustments.

A natural next step is integrating VisuaLint in a broader system,
such as the Vega Editor or Observable. Errors of construction are
common in both, yet the current method of surfacing includes am-
biguous messages conflating code errors with construction errors.

These messages are difficult to parse, particularly for novice read-
ers. For visualization experts, who do not need verbose explana-
tions to understand construction errors, VisuaLint offers a unique
solution in it’s unobtrusive, in situ approach to efficacy checks.

Parallel to our interest in subverting the rhetorical force of visu-
alizations is that of trust. Do the efficacy checks provided by Visu-
aLint impact readers’ trust in a visualization? This is particularly
relevant in context of data journalism, where narratives in visual-
izations inform a broad population.

In general, exposing conventions of visualization practices may
highlight implicit assumptions of visualization authors, inform
their readers of said practices, and generally improve the quality
of visualizations across many domains. VisuaLint offers a glimpse
into the future user experience of visualization linters—by focusing
on authors and readers, we facilitate a communion between both
groups. Ultimately, we hope future work builds on three elements
of this paper: 1) developing informed critique of visualizations, 2)
apprising users of visualization errors, and 3) further exploring vi-
sualization literacy in a broad audience.

7. Acknowledgements

We thank our anonymous reviewers as well as Nava Haghighi,
Jonathan Zong, Crystal Lee, Alan Lundgard, and other members of
the MIT Visualization Group for all their thoughtful feedback. We
would further like to acknowledge the online community of data
visualization experts, journalists, and authors for their continued
work on catching poorly constructed visualizations and improv-
ing data communication. This work was supported by NSF Award
1900991.

References

[BBC∗01] BLACKWELL A. F., BRITTON C., COX A., GREEN T. R.,
GURR C., KADODA G., KUTAR M., LOOMES M., NEHANIV C. L.,
PETRE M., ET AL.: Cognitive dimensions of notations: Design tools for
cognitive technology. In International Conference on Cognitive Technol-
ogy (2001), Springer, pp. 325–341. 2, 3

[BBZ18] BAROWY D. W., BERGER E. D., ZORN B.: Excelint: Auto-
matically finding spreadsheet formula errors. Proceedings of ACM Pro-
gramming Languages 2, OOPSLA (Oct. 2018), 148:1–148:26. doi:
10.1145/3276518. 2

[BDSK∗17] BINNIG C., DE STEFANI L., KRASKA T., UPFAL E.,
ZGRAGGEN E., ZHAO Z.: Toward sustainable insights, or why
polygamy is bad for you. In CIDR 8th Biennial Conference on Inno-
vative Data Systems Research (2017). 2

[BE15] BRESCIANI S., EPPLER M. J.: The pitfalls of visual represen-
tations: A review and classification of common errors made while de-
signing and interpreting visualizations. Sage Open 5, 4 (2015). doi:
10.1177/2158244015611451. 2

[BGB14] BAROWY D. W., GOCHEV D., BERGER E. D.: Checkcell:
Data debugging for spreadsheets. Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications OOPSLA 49, 10 (2014), 507–523. doi:10.1145/
2660193.2660207. 2

[DAREA∗18] DIEHL A., ABDUL-RAHMAN A., EL-ASSADY M.,
BACH B., KEIM D., CHEN M.: Visguides: A forum for discussing vi-
sualization guidelines. In Proceedings of the Eurographics/IEEE VGTC
Conference on Visualization: Short Papers (2018), pp. 61–65. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

227

https://doi.org/10.1145/3276518
https://doi.org/10.1145/3276518
https://doi.org/10.1177/2158244015611451
https://doi.org/10.1177/2158244015611451
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/2660193.2660207


A. K. Hopkins, M. Correll, A. Satyanarayan / VisuaLint

[GBK17] GUO Y., BINNIG C., KRASKA T.: What you see is not
what you get!: Detecting simpson’s paradoxes during data exploration.
In ACM SIGMOD Workshop on Human-In-the-Loop Data Analytics
(HILDA) (2017), ACM, pp. 2:1–2:5. doi:10.1145/3077257.
3077266. 2

[HSH18] HOFFSWELL J., SATYANARAYAN A., HEER J.: Augmenting
code with in situ visualizations to aid program understanding. In ACM
Human Factors in Computing Systems (CHI) (2018). URL: http://
vis.csail.mit.edu/pubs/insitu-vis-debugging. 3

[HST17] HYNES N., SCULLEY D., TERRY M.: The data linter:
Lightweight, automated sanity checking for ml data sets. In NIPS: Work-
shop on Systems for ML and Open Source Software (2017). 3

[KHAA16] KENNEDY H., HILL R. L., AIELLO G., ALLEN W.: The
work that visualisation conventions do. Information, Communication &
Society 19, 6 (2016), 715–735. 2, 3

[Kos08] KOSTELNICK C.: The visual rhetoric of data displays: The co-
nundrum of clarity. IEEE Transactions on Professional Communication
51, 1 (2008), 116–130. doi:10.1109/TPC.2007.914869. 2, 3

[Kos16] KOSARA R.: An empire built on sand: Reexamining what we
think we know about visualization. In Proceedings of the sixth workshop
on beyond time and errors on novel evaluation methods for visualization
(2016), ACM, pp. 162–168. 2, 3

[KS08] KIRBY R. M., SILVA C. T.: The need for verifiable visualization.
IEEE Computer Graphics and Applications 28, 5 (2008), 78–83. doi:
10.1109/MCG.2008.103. 2

[LDH∗19] LEE D. J. L., DEV H., HU H., ELMELEEGY H.,
PARAMESWARAN A. G.: Avoiding drill-down fallacies with vispilot:
Assisted exploration of data subsets. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces IUI (2019), ACM,
pp. 186–196. doi:10.1145/3301275.3302307. 2

[Leo19] LEO S.: Mistakes, we’ve drawn a
few. https://medium.economist.com/
mistakes-weve-drawn-a-few-8cdd8a42d368, March
2019. 1, 3

[Lou06] LOURIDAS P.: Static code analysis. IEEE Software 23, 4 (2006),
58–61. 3

[Mee17] MEEKS E.: viz-linting. https://github.com/emeeks/
viz-linting, May 2017. 2, 3

[MK18] MCNUTT A., KINDLMANN G.: Linting for visualization: To-
wards a practical automated visualization guidance system. In Vis-
Guides: 2nd Workshop on the Creation, Curation, Critique and Condi-
tioning of Principles and Guidelines in Visualization (2018). 2, 3

[MKC20] MCNUTT A., KINDLMANN G., CORRELL M.: Surfacing vi-
sualization mirages. In ACM Human Factors in Computing Systems
(CHI) (2020). to appear. 2

[MWN∗19] MORITZ D., WANG C., NELSON G. L., LIN H., SMITH
A. M., HOWE B., HEER J.: Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. IEEE Trans-
actions on Visualization and Computer Graphics 25, 1 (2019), 438–448.
doi:10.1109/TVCG.2018.2865240. 2, 3

[PAEE19] PECK E. M., AYUSO S. E., EL-ETR O.: Data is personal:
Attitudes and perceptions of data visualization in rural Pennsylvania. In
Proceedings of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (2019), ACM, p. 244. 3

[PRS∗15] PANDEY A. V., RALL K., SATTERTHWAITE M. L., NOV O.,
BERTINI E.: How deceptive are deceptive visualizations?: An empirical
analysis of common distortion techniques. In Proceedings of the 2015
CHI Conference on Human Factors in Computing Systems (2015), ACM,
pp. 1469–1478. doi:10.1145/2702123.2702608. 2

[She05] SHEPARD L.: Linking formative assessment to scaffolding. Ed-
ucational Leadership (2005). 9

[Shi19] SHIHN P.: Rough.js: Create graphics with a hand-drawn, sketchy,
appearance. https://roughjs.com, December 2019. 5

[SML∗18] SAKET B., MORITZ D., LIN H., DIBIA V., DEMIRALP C.,
HEER J.: Beyond heuristics: Learning visualization design. arXiv
preprint arXiv:1807.06641 (2018). 2

[SMWH16] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2016), 341–350.
doi:10.1109/TVCG.2016.2599030. 2, 3, 5

[Tuf01] TUFTE E. R.: The visual display of quantitative information,
vol. 2. Graphics press Cheshire, CT, 2001. 3

[WII∗12] WOOD J., ISENBERG P., ISENBERG T., DYKES J., BOUKHE-
LIFA N., SLINGSBY A.: Sketchy rendering for information visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics 18, 12
(2012), 2749–2758. 2, 4

[ZZZK18] ZGRAGGEN E., ZHAO Z., ZELEZNIK R., KRASKA T.: Inves-
tigating the effect of the multiple comparisons problem in visual analy-
sis. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (2018), ACM, p. 479. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

228

https://doi.org/10.1145/3077257.3077266
https://doi.org/10.1145/3077257.3077266
http://vis.csail.mit.edu/pubs/insitu-vis-debugging
http://vis.csail.mit.edu/pubs/insitu-vis-debugging
https://doi.org/10.1109/TPC.2007.914869
https://doi.org/10.1109/MCG.2008.103
https://doi.org/10.1109/MCG.2008.103
https://doi.org/10.1145/3301275.3302307
https://medium.economist.com/mistakes-weve-drawn-a-few-8cdd8a42d368
https://medium.economist.com/mistakes-weve-drawn-a-few-8cdd8a42d368
https://github.com/emeeks/viz-linting
https://github.com/emeeks/viz-linting
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/2702123.2702608
https://roughjs.com
https://doi.org/10.1109/TVCG.2016.2599030

